inundation area
Recently Published Documents


TOTAL DOCUMENTS

188
(FIVE YEARS 85)

H-INDEX

15
(FIVE YEARS 3)

2022 ◽  
Vol 12 (2) ◽  
pp. 858
Author(s):  
Kentaro Imai ◽  
Takashi Hashimoto ◽  
Yuta Mitobe ◽  
Tatsuo Masuta ◽  
Narumi Takahashi ◽  
...  

Tsunami-related fires may occur in the inundation area during a huge tsunami disaster, and woody debris produced by the tsunami can cause the fires to spread. To establish a practical method for evaluating tsunami-related fire predictions, we previously developed a method for evaluating the tsunami debris thickness distribution that uses tsunami computation results and static parameters for tsunami numerical analysis. We then used this evaluation method to successfully reproduce the tsunami debris accumulation trend. We then developed an empirical building fragility function that relates the production of debris not only to inundation depth but also to the topographic gradient and the proportion of robust buildings. Using these empirical evaluation models, along with conventional tsunami numerical analysis data, we carried out a practical tsunami debris prediction for Owase City, Mie Prefecture, a potential disaster area for a Nankai Trough mega-earthquake. This prediction analysis method can reveal hazards which go undetected by a conventional tsunami inundation analysis. These results indicate that it is insufficient to characterize the tsunami hazard by inundation area and inundation depth alone when predicting the hazard of a huge tsunami; moreover, more practically, it is necessary to predict the hazard based on the effect of tsunami debris.


2021 ◽  
Vol 2 (2) ◽  
pp. 9-20
Author(s):  
Fajar Setiawan ◽  
Iwan Ridwansyah ◽  
Luki Subehi

Wetlands are vulnerable natural habitats that should be preserved to protect habitat for fish and wildlife, flood mitigation, improve water quality, recharge area, and maintain surface water flow during dry periods. Water bodies and swamp areas are two primary components of the wetland. Considering its essential roles for the ecosystem, Lake Sentarum was set as a national park area (Lake Sentarum National Park – TNDS), Indonesia's 15 national priority lakes, and; designated as a Ramsar site (The Convention on Wetlands) in Indonesia. Despite the significant roles for the ecosystem, providing the limnological characteristic of Lake Sentarum remains a challenge due to its remote location. This study aims to identify the rainfall and inundation characteristics in the Lake Sentarum area and develop the rainfall-inundation relationship in the TNDS area. First, we carried out rainfall analysis using the Climate Forecast System Reanalysis (CFSR) data. Second, we utilized a remote-sensing-based global surface water map from the Joint Research Centre (JRC) to describe the historical inundation pattern. Third, we applied the Normalized Different Water Index (NDWI) combined with Modification Normalized Different Water Index (MNDWI) to the selected Landsat dataset to extract the inundation area. Finally, we developed a rainfall-inundation relationship in the TNDS area. The result indicated that the yearly rainfall in the TNDS area has an increasing trend, with the highest peak in December and the second peak in April. Historical Landsat data shows that the TNDS has a complex pattern of inundation. The maximum water extent was 649 km2, with a 95 km2 as permanent (90>- 100 % water occurrence). These areas were constantly flooded, even in the dry season. The most significant non-permanent water was 161 km2 (80>- 90 % water occurrence). This permanent and larger temporary water area provides fish and other aquatic biotas habitats. It temporarily stores the water flowing slowly into the River Kapuas through the Tawang River. We captured the spatial inundation pattern and its relationship with the temporal regional rainfall. The developed relationship showed a lag of -60 days of accumulated rainfall correlated with the inundation area (R2 of 0.48, n=11). These findings will thus provide valuable data for lake managers and policy-makers to protect the biota and habitat in Lake Sentarum National Park area.


Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 57
Author(s):  
Zixiong Wang ◽  
Ya Sun ◽  
Chunhui Li ◽  
Ling Jin ◽  
Xinguo Sun ◽  
...  

Exceeding control standard floods pose threats to the management of small and medium–scale rivers. Taking Fuzhouhe river as an example, this paper analyzes the submerged depth, submerged area and arrival time of river flood risk in the case of exceeding control standard floods (with return period of 20, 50, 100 and 200 years) through a coupled one– and two–dimensional hydrodynamic model, draws the flood risk maps and proposes emergency plans. The simulation results of the one–dimensional model reveal that the dikes would be at risk of overflowing for different frequencies of floods, with a higher level of risk on the left bank. The results of the coupled model demonstrate that under all scenarios, the inundation area gradually increases with time until the flood peak subsides, and the larger the flood peak, the faster the inundation area increases. The maximum submerged areas are 42.73 km2, 65.95 km2, 74.86 km2 and 82.71 km2 for four frequencies of flood, respectively. The change of submerged depth under different frequency floods shows a downward–upward–downward trend and the average submerged depth of each frequency floods is about 1.4 m. The flood risk maps of different flood frequencies are created by GIS to analyze flood arrival time, submerged area and submerged depth to plan escape routes and resettlement units. The migration distances are limited within 4 km, the average migration distance is about 2 km, the vehicle evacuation time is less than 20 min, and the walking evacuation time is set to about 70 min. It is concluded that the flood risk of small and medium–scale rivers is a dynamic change process, and dynamic flood assessment, flood warning and embankment modification scheme should be further explored.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3434
Author(s):  
José David del Moral-Erencia ◽  
Patricio Bohorquez ◽  
Pedro Jesus Jimenez-Ruiz ◽  
Francisco José Pérez-Latorre

We present a basin-scale method to assimilate hydrological data from remote-sensed flood evidence and map civil infrastructures with risk of flooding. As in many rural areas with a semi-arid climate, the studied catchments do not contain stream gauge, and precipitation data does not capture the spatial variability of extreme hydrological events. Remote-sensed flood evidence as slackwater sediments were available at the whole basin, allowing the paleohydrological reconstruction at many sites across the catchment. The agreement between the predicted and observed inundation area was excellent, with an error lower than 15% on average. In addition, the simulated elevations overlapped the observed values in the flooded areas, showing the accuracy of the method. The peak discharges that provoked floods recorded the spatial variability of the precipitation. The variation coefficients of the rainfall intensity were 30% and 40% in the two studied basins with a mean precipitation rate of 3.1 and 4.6 mm/h, respectively. The assumption of spatially uniform precipitation leads to a mean error of 20% in evaluating the local water discharges. Satellite-based rainfall underpredicted the accumulated precipitation by 30–85.5%. Elaborating an inventory of the civil infrastructures at risk was straightforward by comparing the water surface elevation and transport network. The reconstructed maps of rainfall rate were used in the distributed hydrological model IBERPLUS to this end. Recent flood events that overtopped the infrastructures at risk verified our predictions. The proposed research methods can be easily applied and tested in basins with similar physical characteristics around the Mediterranean region.


2021 ◽  
Vol 930 (1) ◽  
pp. 012091
Author(s):  
K E Milleanisa ◽  
P T Juwono ◽  
R Asmaranto ◽  
M Ayu

Abstract Dams are a form of effort to conserve or protect water resources. The function of the Dam as a reservoir for water, irrigation, power generation, and flood control. However, in addition to its huge benefits, dam construction also can endanger the community’s safety, namely in the form of dam breaks. The main causes of dam break are overtopping and piping. So that analysis is needed related to dam break to minimize the impact. Based on the Zhong Xing HY21 software, the most severe impact of the break of the Gembong Dam was due to overtopping using the QInflow PMF design flood of 724.142 m3/s. It resulted in an inundation area of 54.682 km2 with a maximum inundation height of 5.129 m. As a result of the break of the Gembong Dam, 37 villages downstream of the Gembong Dam were flooded. There are 80.819 people affected by this risk. It is stated that all affected villages are at the 4th hazard classification level or very high hazard.


2021 ◽  
Author(s):  
Qing Liu ◽  
Hanqing Xu ◽  
Jun Wang

Abstract. The co-occurrence of storm tide and rainstorm during tropical cyclones (TCs) can lead to compound flooding in low-lying coastal regions. The assessment of TC compound flood risk can provide vital insight for research on coastal flooding prevention. This study investigates TC compound flooding by constructing a storm surge model and overland flooding model using Delft3D Flexible Mesh (DFM), illustrating the serious consequences from the perspective of storm tide. Based on the probability distribution of storm tide, this study regards TC1415 as the 100-year event, TC6311 as the 50-year event, TC8616 as the 25-year event, TC8007 as the 10-year event, and TC7109 as the 5-year event. The results indicate that the coastal area is a major floodplain, primarily due to storm tide, with the inundation severity positively correlated with the height of the storm tide. For 100-year TC event, the inundation area with a depth above 1.0 m increases by approximately 2.5 times when compared with 5-year TC event. The comparison of single-driven flood (storm tide flooding and rainstorm inundation) and compound flood hazards shows that simply accumulating every single-driven flood hazard to define the compound flood hazard may cause underestimation. For future research on compound flooding, copula function can be adopted to investigate the joint occurrence of storm tide and rainstorm to reveal the severity of extreme TC flood hazards.


2021 ◽  
Vol 884 (1) ◽  
pp. 012014
Author(s):  
Cahyadi Setiawan ◽  
Muzani ◽  
Warnadi

Abstract Jakarta has approximately 40 percent of the area below sea level at high tide, one of which is located at Muara Angke. The area of Muara Angke experiences inundation and has groundwater contaminated by urban community activities and saltwater intrusion. As for the purpose in this research is two calculate the relationship between socioeconomic status and household water requirement. This research was conducted for 5 months from March to July during the Covid-19 pandemic. Respondents were 40 households which were determined by simple random sampling. Multiple regression is used to determine the relationship between the independent variables and dependent variable. The results showed that there was a strong relationship between socioeconomic status and household water requirement because the value was above 0.8. The value R Square obtained is 78.9% which can be interpreted that the independent variables contribute 78.9% to the dependent variable and remaining 21.1% is influenced by other factors. The most influential variable is the number of household members.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2269
Author(s):  
Xarapat Ablat ◽  
Gaohuan Liu ◽  
Qingsheng Liu ◽  
Chong Huang

Vegetation, hydrology and geomorphology are three major elements of the floodplain ecosystem on Earth. Although the normalized difference vegetation index (NDVI) has been used extensively to characterize floodplain vegetation growth, vigour and biomass, methods for quantifying the various distinct responses of floodplain vegetation to hydro-geomorphological changes in different lateral belts in arid regions are still needed. In this study, the Linhe reach was divided into four lateral belts based on their hydro-geomorphological characteristics, and the Moderate Resolution Imaging Spectroradiometer (MODIS)-NDVI time series statistical indicators were used to characterise the distinct changing the patterns of vegetation growth in different belts. The response of floodplain vegetation to river hydro-geomorphology in each belt was analysed. The result showed that the average maximum NDVI value in the regular inundation area was 0.23 and higher than that in the other lateral belts. The correlation between the water persistence time and peak NDVI value in the regular water inundation area was significant (ρ = 0.84), indicating that in contrast to highly frequent or extremely rare water inundation, regular water inundation provides significant benefits to floodplains. Continuous or highly frequent inundation may cause decreased vegetation productivity. Overall, our results suggest that the vegetation greenness response to the river hydro-geomorphology is different from the river to the edge of the floodplain. Thus, a better understanding of the interactions between the floodplain vegetation and river hydro-morphology and river water resource management in arid-region floodplains.


Water Policy ◽  
2021 ◽  
Author(s):  
Jingming Hou ◽  
Zhaoan Zhang ◽  
Dawei Zhang ◽  
Baoshan Shi ◽  
Guangzhao Chen ◽  
...  

Abstract Traditional flood simulations fail to properly consider the impact of soil infiltration in floodplain areas with high soil infiltration rates. Notably, ignoring soil infiltration will lead to considerable uncertainty in flood simulations. In this paper, a fully hydrodynamic model coupled with the Green–Ampt infiltration model was used. Taking a natural reach in northern China (HTH in this paper) as a case study, observed flood discharge data were used to analyze the influence of soil infiltration on flood propagation based on the flood propagation simulation results for various inflow conditions. The maximum difference of inundation area is about 25%. The results show that soil infiltration has little effect on the inundation area during the rising stage of a flood. In the late period of a flood, the inundation area considering the effect of infiltration is smaller than that without infiltration, and the smaller the peak coefficient is, the longer the flood duration is, the larger the impact of infiltration on the inundation area. When the peak shape coefficient is 0.42 and the flood duration is 44.4 h, the maximum difference of the inundation area is about 28%. The research results provide a reference for flood management and post-disaster rescue efforts.


Sign in / Sign up

Export Citation Format

Share Document