interacting random walks
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 7)

H-INDEX

3
(FIVE YEARS 2)

Author(s):  
Manfred Salmhofer

AbstractRegularized coherent-state functional integrals are derived for ensembles of identical bosons on a lattice, the regularization being a discretization of Euclidian time. Convergence of the time-continuum limit is proven for various discretized actions. The focus is on the integral representation for the partition function and expectation values in the canonical ensemble. The connection to the grand-canonical integral is exhibited and some important differences are discussed. Uniform bounds for covariances are proven, which simplify the analysis of the time-continuum limit and can also be used to analyze the thermodynamic limit. The relation to a stochastic representation by an ensemble of interacting random walks is made explicit, and its modifications in presence of a condensate are discussed.


2020 ◽  
Vol 30 (13) ◽  
pp. 2557-2618
Author(s):  
Thomas Hudson ◽  
Patrick van Meurs ◽  
Mark Peletier

This paper focuses on the connections between four stochastic and deterministic models for the motion of straight screw dislocations. Starting from a description of screw dislocation motion as interacting random walks on a lattice, we prove explicit estimates of the distance between solutions of this model, an SDE system for the dislocation positions, and two deterministic mean-field models describing the dislocation density. The proof of these estimates uses a collection of various techniques in analysis and probability theory, including a novel approach to establish propagation-of-chaos on a spatially discrete model. The estimates are non-asymptotic and explicit in terms of four parameters: the lattice spacing, the number of dislocations, the dislocation core size, and the temperature. This work is a first step in exploring this parameter space with the ultimate aim to connect and quantify the relationships between the many different dislocation models present in the literature.


2019 ◽  
Vol 175 (1) ◽  
pp. 71-96 ◽  
Author(s):  
Svante Janson ◽  
Vadim Shcherbakov ◽  
Stanislav Volkov

2018 ◽  
Vol 55 (4) ◽  
pp. 1093-1112
Author(s):  
Josh Rosenberg

Abstract We examine a system of interacting random walks with leftward drift on ℤ, which begins with a single active particle at the origin and some distribution of inactive particles on the positive integers. Inactive particles become activated when landed on by other particles, and all particles beginning at the same point possess equal leftward drift. Once activated, the trajectories of distinct particles are independent. This system belongs to a broader class of problems involving interacting random walks on rooted graphs, referred to collectively as the frog model. Additional conditions that we impose on our model include that the number of frogs (i.e. particles) at positive integer points is a sequence of independent random variables which is increasing in terms of the standard stochastic order, and that the sequence of leftward drifts associated with frogs originating at these points is decreasing. Our results include sharp conditions with respect to the sequence of random variables and the sequence of drifts that determine whether the model is transient (meaning the probability infinitely many frogs return to the origin is 0) or nontransient. We consider several, more specific, versions of the model described, and a cleaner, more simplified set of sharp conditions will be established for each case.


2017 ◽  
Vol 49 (2) ◽  
pp. 327-343 ◽  
Author(s):  
Arka Ghosh ◽  
Steven Noren ◽  
Alexander Roitershtein

Abstract We observe the frog model, an infinite system of interacting random walks, on ℤ with an asymmetric underlying random walk. For certain initial frog distributions we construct an explicit formula for the moments of the leftmost visited site, as well as their asymptotic scaling limits as the drift of the underlying random walk vanishes. We also provide conditions in which the lower bound can be scaled to converge in probability to the degenerate distribution at 1 as the drift vanishes.


Sign in / Sign up

Export Citation Format

Share Document