Controlling contamination via proper airflow distribution in an operating room becomes vital to ensure the reliable surgery process. The heating, ventilation, and air conditioning (HVAC) systems significantly influence the operating room environment, including temperature, relative humidity, pressurization, particle counts, filtration, and ventilation rate. A full-scale operating room has been investigated extensively through field measurements and numerical analyses. Computational fluid dynamics (CFD) simulation was conducted and verified with the field measurement data. The simulation was analyzed with three different operating room schemes, including at-rest conditions (case 1), normal operational conditions with personnel (case 2), and actual conditions with personnel inside and some medical equipment blocking the return air (case 3). The concentration decay method was used to evaluate this study. The results revealed that the contamination concentration in case 1 could be diluted quickly with the average value of 404 ppm, whereas the concentration in case 2 slightly increased while performing a surgery with the average value of 420 ppm. The return air grilles in case 3, blocked by obstacles from some medical equipment, resulted in the average concentration value of 474 ppm. Other than that, the contaminant dilution could be obstructed dramatically, which revealed that proper and smooth airflow distribution is essential for contamination control. The ventilation efficiency of case 2 and case 3 dropped around 6% and 17.91% compared to case 1 in the unoccupied and ideal condition. Ventilation efficiency also decreased along with decreasing the air change rate per hour (ACH), while with increasing ACH, the ventilation efficiency in case 3 actually increased, approaching case 2 in the ideal condition.