gulf of lion
Recently Published Documents


TOTAL DOCUMENTS

150
(FIVE YEARS 30)

H-INDEX

32
(FIVE YEARS 2)

2021 ◽  
Vol 18 (19) ◽  
pp. 5513-5538
Author(s):  
Gaël Many ◽  
Caroline Ulses ◽  
Claude Estournel ◽  
Patrick Marsaleix

Abstract. The Gulf of Lion shelf (GoL, NW Mediterranean) is one of the most productive areas in the Mediterranean Sea. A 3D coupled hydrodynamic–biogeochemical model is used to study the mechanisms that drive the particulate organic carbon (POC) dynamics over the shelf. A set of observations, including temporal series from a coastal station, remote sensing of surface chlorophyll a, and a glider deployment, is used to validate the distribution of physical and biogeochemical variables from the model. The model reproduces the time and spatial evolution of temperature, chlorophyll a, and nitrate concentrations well and shows a clear annual cycle of gross primary production and respiration. We estimate an annual net primary production of ∼ 200 × 104 t C yr−1 at the scale of the shelf. The primary production is marked by a coast-slope increase with maximal values in the eastern region. Our results show that the primary production is favoured by the inputs of nutrients imported from offshore waters, representing 3 and 15 times the inputs of the Rhône in terms of nitrate and phosphate. In addition, the empirical orthogonal function (EOF) decomposition highlights the role of solar radiation anomalies and continental winds that favour upwellings, and inputs of the Rhône River, in annual changes in the net primary production. Annual POC deposition (27 × 104 t C yr−1) represents 13 % of the net primary production. The delivery of terrestrial POC favours the deposition in front of the Rhône mouth, and the mean cyclonic circulation increases the deposition between 30 and 50 m depth from the Rhône prodelta to the west. Mechanisms responsible for POC export (24 × 104 t C yr−1) to the open sea are discussed. The export off the shelf in the western part, from the Cap de Creus to the Lacaze-Duthiers canyon, represents 37 % of the total POC export. Maximum values are obtained during shelf dense water cascading events and marine winds. Considering surface waters only, the POC is mainly exported in the eastern part of the shelf through shelf waters and Rhône inputs, which spread to the Northern Current during favourable continental wind conditions. The GoL shelf appears as an autotrophic ecosystem with a positive net ecosystem production and as a source of POC for the adjacent NW Mediterranean basin. The undergoing and future increase in temperature and stratification induced by climate change could impact the trophic status of the GoL shelf and the carbon export towards the deep basin. It is crucial to develop models to predict and assess these future evolutions.


2021 ◽  
Author(s):  
sylvain blouet ◽  
Katell Guizien ◽  
lorenzo Bramanti

Artificial reefs (ARs) have been used to support fishing activities. Sessile invertebrates are essential components of trophic networks within ARs, supporting fish productivity. However, colonization by sessile invertebrates is possible only after effective larval dispersal from source populations, usually in natural habitat. We tested the relevance of geographic location, duration of immersion and depth on ARs colonization processes in the Gulf of Lion. Five species sessile invertebrates species, with contrasting life history traits and regional distribution in the natural rocky habitat, were inventoried on ARs deployed during two immersion periods (1985 and 2000-2009) and at different depths. At the local level, neither depth nor immersion duration differentiated ARs assemblages. At the regional scale, colonization patterns differed between species, resulting in diverse assemblages. This study highlights the primacy of geographical positioning over immersion duration and depth in ARs colonization, suggesting it should be accounted for in maritime spatial planning.


Author(s):  
Romain HEMELSDAEL ◽  
Michel SERANNE ◽  
Eglantine HUSSON ◽  
Gregory BALLAS

The “Wilson cycle” involves reactivation of rifting structures during convergence-driven inversion, then thrust reactivation during post-orogenic dismantling and extension. Classic documented examples of the Wilson cycle, such as in the pyrenean orogen, are based on sequential sections normal to the orogen. However oblique convergence/divergence that involves strain partitioning, and arcuate segments of the orogen prevent simple tectonic restorations. Languedoc region (southern France) provides a case study of a complex poly-phased deformation involving a range of reactivated structures and cross-cutting relationships, acquired in response to different stress-regimes of varying orientations. We analyse and correlate the onshore-offshore structures of the Languedoc, based on reassessment of existing and newly acquired subsurface data. New results in the previously poorly documented coastal area point to the existence of unrecognized major structures that improves onshore-offshore correlations. Our results show i) the part played by the Mesozoic (early Jurassic, then mid-Cretaceous) extensional phases in the development and the localization of pyrenean-related contractional structures; ii) the control of the later Oligocene rifting of the Gulf of Lion. Restoration of the Pyrenean shortening and Oligocene rifting, constructed along sections of relevant orientation (i.e. close to perpendicular to each other) indicate minimum shortening of 26 km and extension of 14km, respectively, in the Languedoc foreland. Integration of the Pyrenean structural framework of Languedoc reveals a wide, NE-trending transfer zone linking the Iberian Pyrenees to Provence.


2021 ◽  
Author(s):  
Douglas Keller Jr. ◽  
Yonatan Givon ◽  
Romain Pennel ◽  
Shira Raveh-Rubin ◽  
Philippe Drobinski

Abstract. Deep convection in the Gulf of Lion is believed to be primarily driven by the Mistral winds. However, our findings show that the seasonal atmospheric change provides roughly 2/3 of the buoyancy loss required for deep convection to occur, for the 2012 to 2013 year, with the Mistral supplying the final 1/3. Two NEMOMED12 ocean simulations of the Mediterranean Sea were run for the Aug. 1st, 2012 to July 31st, 2013 year, forced with two sets of atmospheric forcing data from a RegIPSL coupled run within the Med-CORDEX framework. One set of atmospheric forcing data was left unmodified, while the other was filtered to remove the signal of the Mistral. The Control simulation featured deep convection, while the Seasonal did not. A simple model was derived, relating the anomaly scale forcing (the difference between the Control and Seasonal runs) and the seasonal scale forcing to the ocean response through the Stratification Index. This simple model revealed that the Mistral's effect on buoyancy loss depends more on its strength rather than its frequency or duration. The simple model also revealed that the seasonal cycle of the Stratification Index is equal to the net surface heat flux over the course of the year, with the stratification maximum and minimum occurring roughly at the fall and spring equinoxes.


2021 ◽  
Vol 17 (4) ◽  
pp. 1523-1532
Author(s):  
Aleix Cortina-Guerra ◽  
Juan José Gomez-Navarro ◽  
Belen Martrat ◽  
Juan Pedro Montávez ◽  
Alessandro Incarbona ◽  
...  

Abstract. High-resolution climate model simulations for the last millennium were used to elucidate the main winter Northern Hemisphere atmospheric pattern during enhanced Eastern Mediterranean Transient (EMT-type) events, a situation in which an additional overturning cell is detected in the Mediterranean at the Aegean Sea. The differential upward heat flux between the Aegean Basin and the Gulf of Lion was taken as a proxy of EMT-type events and correlated with winter mean geopotential height at 500 mbar in the Northern Hemisphere (20–90∘ N and 100∘ W–80∘ E). Correlations revealed a pattern similar to the East Atlantic/Western Russian (EA/WR) mode as the main driver of EMT-type events, with the past 1000 years of EA/WR-like mode simulations being enhanced during insolation minima. Our model results are consistent with alkenone sea surface temperature (SST) reconstructions that documented an increase in the west–east basin gradients during EMT-type events.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Claire Peyran ◽  
Emilie Boissin ◽  
Titouan Morage ◽  
Elisabet Nebot-Colomer ◽  
Guillaume Iwankow ◽  
...  

AbstractThe fan mussel, Pinna nobilis, endemic to the Mediterranean Sea, is a critically endangered species facing mass mortality events in almost all of its populations, following the introduction of the parasite Haplosporidium pinnae. Such a unique pandemic in a marine organism, which spreads rapidly and with mortality rates reaching up to 100%, could lead to the potential extinction of the species. Only few regions, involving lagoon habitats, remain healthy throughout the entire Mediterranean Sea. This study describes the genetic structure of P. nobilis across the Gulf of Lion, including confined locations such as lagoons and ports. A total of 960 samples were collected among 16 sites distributed at 8 localities, and then genotyped using 22 microsatellite markers. Genetic diversity was high in all sites with mean allele numbers ranging between 10 and 14.6 and with observed heterozygosities (Ho) between 0.679 and 0.704. No genetic differentiation could be identified (FST ranging from 0.0018 to 0.0159) and the percentages of related individuals were low and similar among locations (from 1.6 to 6.5%). Consequently, all fan mussels, over the entire coastline surveyed, including those in the most geographically isolated areas, belong to a large genetically homogeneous population across the Gulf of Lion. Considering the ongoing mass mortality context, this result demonstrates that almost all of the genetic diversity of P. nobilis populations is still preserved even in isolated lagoons, which might represent a refuge habitat for the future of the species.


2021 ◽  
Author(s):  
Gaël Many ◽  
Caroline Ulses ◽  
Claude Estournel ◽  
Patrick Marsaleix

Abstract. The Gulf of Lion shelf (NW Mediterranean) is one of the most productive areas in the Mediterranean Sea. A 3D coupled hydrodynamic-biogeochemical model is used to study the mechanisms that drive the particulate organic carbon (POC) budget over the shelf. A set of observations, including temporal series from a coastal station, remote sensing of surface chlorophyll-a, and a glider deployment, is used to validate the distribution of physical and biogeochemical variables from the model. The model reproduces well the time and spatial evolution of temperature, chlorophyll, and nitrate concentrations and shows a clear annual cycle of gross primary production and respiration. Knowing the physical and biogeochemical inputs and outputs terms, the annual budget of the POC in the Gulf of Lion is estimated and discussed. We estimate an annual net primary production of ~200 104 tC yr−1 at the scale of the shelf. The primary production is marked by a coast-slope increase with maximal values in the eastern region. Our results show that the primary production is favored by the inputs of nutrients imported from offshore waters, representing 3 and 15 times the inputs of the Rhône in terms of nitrate and phosphate. Besides, the EOFs decomposition highlights the role of solar radiation anomalies and continental winds that favor upwellings, and inputs of the Rhône River, on annual changes in the net primary production. Annual POC deposition (19 104 tC yr−1) represents 10 % of the net primary production. The delivery of terrestrial POC favored the deposition in front of the Rhône mouth and the mean cyclonic circulation increases the deposition between 30 and 50 m depth from the Rhône prodelta to the west. Mechanisms responsible for POC export (24 104 tC yr−1) to the open sea are discussed. The export off the shelf in the western part, from the Cap de Creus to the Lacaze-Duthiers canyon, represented 37 % of the total POC export. Maximum values were obtained during shelf dense water cascading events and marine winds. Considering surface waters only, the POC was mainly exported in the eastern part of the shelf through shelf waters and Rhône inputs, which spread to the Northern Current during favorable continental wind conditions. The Gulf of Lion shelf appears as an autotrophic ecosystem with a positive Net Ecosystem Production and as a source of POC for the adjacent NW Mediterranean basin. The undergoing and future increase in temperature and stratification induced by climate change could impact the trophic status of the GoL shelf and the carbon export towards the deep basin. It is crucial to develop models to predict and assess these future evolutions.


2021 ◽  
Author(s):  
Marion Genet ◽  
Anne-Laure Daniau ◽  
Maria-Angela Bassetti ◽  
Bassem Jallali ◽  
Marie-Alexandrine Sicre ◽  
...  

<p>Nowadays, the Mediterranean region is strongly impacted by fires. Projected warming scenarios suggest increasing fire risk in this region considered as hot-spot of the climate change (Liu et al., 2010; Pechony and Shindell, 2010). However, models based on modern-day statistical relationships do not properly account for interactions between climate, vegetation, and fire. In addition, process-based models must be tested not only against modern observations but also under different past climate conditions reflecting the range of climate variability projected for the next centuries (Hantson et al. 2016). Marine sediments are a major source of fire history of nearby land masses. Here, we present a unique 8,500 yr long record of biomass burning changes from southeastern France based on a marine microcharcoal sedimentary record from the Gulf of Lion, located in the subaqueous Rhone river delta. Sediment delivery to the Gulf of Lion comes mainly from the Rhône River draining a large watershed in southeast France (ca.100,000 km2). Due to the direction of dominant winds blowing from the North-North-West (Mistral and Tramontane) and carrying fine particles from the land to the sea, the microcharcoal record likely reflects the biomass burning in the Rhone watershed and South-East of France. Our results show multi-centennial to millennial changes in biomass burning with a periodicity  of 1000 years for the full record and between 500 and 700 years before 5,000 cal BP and after 3,000 cal BP. Large peaks of biomass burning are associated with marked dry periods observed in the region. Burning of biomass is higher when the region is dominated by xerophytic vegetation than when mesophyte vegetation dominates. The trend and periodicity of the biomass burning record suggest a predominant climatic control of fire occurrences since 8,500 cal BP in this region.</p>


2021 ◽  
Author(s):  
Mathieu Gentil ◽  
François Bourrin ◽  
Xavier Durrieu de Madron ◽  
Claude Estournel

<p>Sediment resuspension and transport on continental shelves are primarily driven by episodic energetic events, such as storm. Unfortunately, resuspension processes remain poorly quantified using traditional sampling techniques due to the intermittency and the intensity of these events. The recent integration of Acoustic Doppler Current Profilers (ADCPs) onto underwater gliders changes the way current and sediment dynamics in the coastal zone can be monitored. Their endurance and ability to measure in all weather conditions increase the probability of capturing sporadic meteorological events. We used a Slocum glider equipped with a CTD (Conductivity, Temperature, Depth), an optical payload and a RDI 600 kHz phased array ADCP to examine storm-induced sediment resuspension in the Gulf of Lion’s shelf (NW Mediterranean). Observations show that early in the storm, when the waves are highest, resuspension is limited by stratification. During the storm, erosion of the pycnocline through thickening of the bottom and surface mixed layers lead to resuspension in the full water column. Coincident optical and acoustic backscatter measurements indicate that the resuspended particulate assemblage is homogeneous and composed of large particles. Glider-ADCP observations showed for the first time that waves may be the predominant forcing which drive the resuspension on the outer shelf (> 80 m) during the winter storm. While, in the Gulf of Lions, which is considered as a relatively low energy continental shelf, modeling studies consider that only current drive resuspension in the outer shelf. This study highlights the usefulness of glider-ADCP to describe episodic processes and to support validation and improvement of regional hydrodynamic models.</p>


2021 ◽  
Vol 168 ◽  
pp. 101995
Author(s):  
Guillaume Marchessaux ◽  
Bruno Belloni

Sign in / Sign up

Export Citation Format

Share Document