bioenergetic metabolism
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 17)

H-INDEX

11
(FIVE YEARS 1)

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3394
Author(s):  
Valeria Manganelli ◽  
Illari Salvatori ◽  
Michele Costanzo ◽  
Antonella Capozzi ◽  
Daniela Caissutti ◽  
...  

Neuroglobin (NGB) is an O2-binding globin mainly expressed in the central and peripheral nervous systems and cerebrospinal fluid. Previously, it was demonstrated that NGB overexpression protects cells from hypoxia-induced death. To investigate processes promoted by NGB overexpression, we used a cellular model of neuroblastoma stably overexpressing an NGB-FLAG construct. We used a proteomic approach to identify the specific profile following NGB overexpression. To evaluate the role of NGB overexpression in increasing energetic metabolism, we measured oxygen consumption rate (OCR) and the extracellular acidification rate through Seahorse XF technology. The effect on autophagy induction was evaluated by analyzing SQSTM1/p62 and LC3-II expression. Proteomic analysis revealed several differentially regulated proteins, involved in oxidative phosphorylation and integral mitochondrial proteins linked to energy metabolism. The analysis of mitochondrial metabolism demonstrated that NGB overexpression increases mitochondrial ATP production. Indeed, NGB overexpression enhances bioenergetic metabolism, increasing OCR and oxygen consumption. Analysis of autophagy induction revealed an increase of LC3-II together with a significant decrease of SQSTM1/p62, and NGB-LC3-II association during autophagosome formation. These results highlight the active participation of NGB in several cellular processes that can be upregulated in response to NGB overexpression, playing a role in the adaptive response to stress in neuroblastoma cells.


Author(s):  
D. S. Mankovsky

Objective — to study the features of bioenergetic provision of oxidative homeostasis (OH) in patients with hypoxic‑ischemic brain lesions (HIBL) before and after cardiac surgery (CS) using artificial circulation (AC). Methods and subjects. Clinical and biochemical studies were performed in 38 patients, including 14 with ischemic stroke, 15 with encephalopathy, and 9 with severe cognitive dysfunction. Results. Analysis of metabolic indicators of glycolysis activity and energy homeostasis of cells before and after CS revealed the patterns of changes in the disorganization of glycolysis mechanisms, intensification of anaerobic mechanisms while limiting the energy supply of cells. The obtained data confirm the formation of specific postoperative metabolic provision of bioenergy in patients with CS, which should be considered as one of the triggers of HIBL and individualization of antioxidant cerebroprotection in the preoperative period, taking into account the state of bioenergetic metabolism of cells and the dominant mechanisms of glycolysis. Conclusions. Preoperative antioxidant cerebroprotection as a means of prevention of hypoxic‑ischemic brain lesions during cardiac surgery using artificial circulation should be based on the determination of bioenergetic and metabolic reserves, the depletion of which by antioxidant drugs suppression should not be considered, as activation of anaerobic glycolysis at simultaneous metabolic suppression of mitochondrial bioenergetics is a factor of formation or aggravation of ischemic lesions of brain.  


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3152
Author(s):  
Naveen Mekala ◽  
Jacob Kurdys ◽  
Alexis Paige Vicenze ◽  
Leana Rose Weiler ◽  
Carmen Avramut ◽  
...  

Metabolic syndrome increases the risk for cardiovascular disease including metabolic cardiomyopathy that may progress to heart failure. The decline in mitochondrial metabolism is considered a critical pathogenic mechanism that drives this progression. Considering its cardiac specificity, we hypothesized that miR 208a regulates the bioenergetic metabolism in human cardiomyocytes exposed to metabolic challenges. We screened in silico for potential miR 208a targets focusing on mitochondrial outcomes, and we found that mRNA species for mediator complex subunit 7, mitochondrial ribosomal protein 28, stanniocalcin 1, and Sortin nexin 10 are rescued by the CRISPR deletion of miR 208a in human SV40 cardiomyocytes exposed to metabolic challenges (high glucose and high albumin-bound palmitate). These mRNAs translate into proteins that are involved in nuclear transcription, mitochondrial translation, mitochondrial integrity, and protein trafficking. MiR 208a suppression prevented the decrease in myosin heavy chain α isoform induced by the metabolic stress suggesting protection against a decrease in cardiac contractility. MiR 208a deficiency opposed the decrease in the mitochondrial biogenesis signaling pathway, mtDNA, mitochondrial markers, and respiratory properties induced by metabolic challenges. The benefit of miR 208a suppression on mitochondrial function was canceled by the reinsertion of miR 208a. In summary, miR 208a regulates mitochondrial biogenesis and function in cardiomyocytes exposed to diabetic conditions. MiR 208a may be a therapeutic target to promote mitochondrial biogenesis in chronic diseases associated with mitochondrial defects.


Author(s):  
Luis C. Vesga ◽  
Ana Milena Pérez Silva ◽  
Cristian C. Bernal ◽  
Stelia Carolina Mendez-Sánchez ◽  
Arnold R. Romero Bohórquez

Author(s):  
Bridgette M. Cumming ◽  
Zainab Baig ◽  
Kelvin W. Addicott ◽  
D Chen ◽  
A. J. C. Steyn

High attrition rates in tuberculosis (TB) drug development have been largely attributed to safety, which is likely due to the use of endpoint assays measuring cell viability to detect drug cytotoxicity. In drug development of cancer, metabolic and neurological disorders, and antibiotics, cytotoxicity is increasingly being assessed using extracellular flux (XF) analysis, which measures cellular bioenergetic metabolism in real-time. Here, we adopt the XF platform to investigate the cytotoxicity of drugs currently used in TB treatment on the bioenergetic metabolism of HepG2 cells, THP-1 macrophages, and human monocyte derived macrophages (hMDM). We found that the XF analysis reveals earlier drug-induced effects on the cells’ bioenergetic metabolism prior to cell death, measured by conventional viability assays. Furthermore, each cell type has a distinct response to drug treatment, suggesting that more than one cell type should be considered to examine cytotoxicity in TB drug development. Interestingly, chemically unrelated drugs with different modes of action on Mycobacterium tuberculosis have similar effects on the bioenergetic parameters of the cells, thus, discouraging the prediction of potential cytotoxicity based on chemical structure and mode of action of new chemical entities. The clustering of the drug-induced effects on the hMDM bioenergetic parameters are reflected in the clustering of the effects of the drugs on cytokine production in hMDMs, demonstrating concurrence between the effects of the drugs on the metabolism and functioning of the macrophages. These findings can be used as a benchmark to establish XF analysis as a new tool to assay cytotoxicity in TB drug development.


Leukemia ◽  
2021 ◽  
Author(s):  
Giorgia Simonetti ◽  
Carlo Mengucci ◽  
Antonella Padella ◽  
Eugenio Fonzi ◽  
Gianfranco Picone ◽  
...  

AbstractAlthough targeting of cell metabolism is a promising therapeutic strategy in acute myeloid leukemia (AML), metabolic dependencies are largely unexplored. We aimed to classify AML patients based on their metabolic landscape and map connections between metabolic and genomic profiles. Combined serum and urine metabolomics improved AML characterization compared with individual biofluid analysis. At intracellular level, AML displayed dysregulated amino acid, nucleotide, lipid, and bioenergetic metabolism. The integration of intracellular and biofluid metabolomics provided a map of alterations in the metabolism of polyamine, purine, keton bodies and polyunsaturated fatty acids and tricarboxylic acid cycle. The intracellular metabolome distinguished three AML clusters, correlating with distinct genomic profiles: NPM1-mutated(mut), chromatin/spliceosome-mut and TP53-mut/aneuploid AML that were confirmed by biofluid analysis. Interestingly, integrated genomic-metabolic profiles defined two subgroups of NPM1-mut AML. One was enriched for mutations in cohesin/DNA damage-related genes (NPM1/cohesin-mut AML) and showed increased serum choline + trimethylamine-N-oxide and leucine, higher mutation load, transcriptomic signatures of reduced inflammatory status and better ex-vivo response to EGFR and MET inhibition. The transcriptional differences of enzyme-encoding genes between NPM1/cohesin-mut and NPM1-mut allowed in silico modeling of intracellular metabolic perturbations. This approach predicted alterations in NAD and purine metabolism in NPM1/cohesin-mut AML that suggest potential vulnerabilities, worthy of being therapeutically explored.


2021 ◽  
Author(s):  
Bridgette M Cumming ◽  
Zainab Baig ◽  
Kelvin W Addicott ◽  
Dongquan Chen ◽  
Adrie J Steyn

High attrition rates in tuberculosis (TB) drug development have been largely attributed to safety, which is likely due to the use of endpoint assays measuring cell viability to detect drug cytotoxicity. In drug development of cancer, metabolic and neurological disorders, and antibiotics, cytotoxicity is increasingly being assessed using extracellular flux (XF) analysis, which measures cellular bioenergetic metabolism in real-time. Here, we adopt the XF platform to investigate the cytotoxicity of drugs currently used in TB treatment on the bioenergetic metabolism of HepG2 cells, THP-1 macrophages, and human monocyte derived macrophages (hMDM). We found that the XF analysis reveals earlier drug-induced effects on the cells' bioenergetic metabolism prior to cell death, measured by conventional viability assays. Furthermore, each cell type has a distinct response to drug treatment, suggesting that more than one cell type should be considered to examine cytotoxicity in TB drug development. Interestingly, chemically unrelated drugs with different modes of action on Mycobacterium tuberculosis have similar effects on the bioenergetic parameters of the cells, thus, discouraging the prediction of potential cytotoxicity based on chemical structure and mode of action of new chemical entities. The clustering of the drug-induced effects on the hMDM bioenergetic parameters are reflected in the clustering of the effects of the drugs on cytokine production in hMDMs, demonstrating concurrence between the effects of the drugs on the metabolism and functioning of the macrophages. These findings can be used as a benchmark to establish XF analysis as a new tool to assay cytotoxicity in TB drug development.


2021 ◽  
Author(s):  
Kelath Murali Manoj

Glycolate, lactate, malate, hydroxyglutarate and isocitrate are key alpha-hydroxyacyl metabolic intermediates found in the tissues/cells/organelles of diverse life forms. They are respectively oxidized to glyoxylate, pyruvate, oxaloacetate, ketoglutarate and oxalosuccinate in cell bioenergetic metabolism. These molecules form key junction points for divergent pathways of two to six carbon-backboned molecules (of various classes of biomolecules like carbohydrates, amino acids, etc.). The oxido-reduction of the alpha-hydroxyacyl species is traditionally believed to be carried out by reversible (de)hydrogenases, employing nicotinamide cofactors. Herein, I propose that while the reductive pathway can be mediated in a facile manner by the (de)hydrogenases, the oxidative reaction could more efficiently be coupled with murzyme activities, which employ diffusible reactive (oxygen) species (DRS/DROS/ROS). Such a murburn strategy would enable the system to tide over the highly unfavorable energy barriers of the sequential dehydrogenase reaction (~450 kJ/mol, or more!), to give kinetically viable bimolecular reactions catering to cellular needs. Further, such a scheme does not necessitate any ‘intelligent governance’ or ‘smart decision-making’ of/by the pertinent redox enzymes.


Author(s):  
Corrilynn O Hileman ◽  
Robert C Kalayjian ◽  
Sausan Azzam ◽  
Daniela Schlatzer ◽  
Kunling Wu ◽  
...  

Abstract Background Neurocognitive impairment (NCI) is associated with monocyte activation in people with HIV (PWH). Activated monocytes increase glycolysis, reduce oxidative phosphorylation, and accumulate citrate and succinate, tricarboxylic acid (TCA) cycle metabolites that promote inflammation—this metabolic shift may contribute to NCI and slowed gait speed in PWH. Methods Plasma citrate and succinate were assayed by liquid chromatography–mass spectrometry from 957 participants upon entry to a multicenter, prospective cohort of older PWH. Logistic, linear, and mixed-effects linear regression models were used to examine associations between entry/baseline TCA cycle metabolites and cross-sectional and longitudinal NCI, neuropsychological test scores (NPZ-4), and gait speed. Results Median age was 51 (range 40–78) years. Each 1 standard deviation (SD) citrate increment was associated with 1.18 higher odds of prevalent NCI at baseline (P = .03), 0.07 SD lower time-updated NPZ-4 score (P = .01), and 0.02 m/s slower time-updated gait speed (P < .0001). Age accentuated these effects. In the oldest age-quartile, higher citrate was associated with 1.64 higher odds of prevalent NCI, 0.17 SD lower NPZ-4, and 0.04 m/s slower gait speed (P ≤ .01 for each). Similar associations were apparent with succinate in the oldest age-quintile, but not with gait speed. In participants without NCI at entry, higher citrate predicted a faster rate of neurocognitive decline. Conclusions Higher plasma citrate and succinate are associated with worse cross-sectional and longitudinal measures of neurocognitive function and gait speed that are age-dependent, supporting the importance of altered bioenergetic metabolism in the pathogenesis of NCI in older PWH.


Healthcare ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 181
Author(s):  
Alex Regno ◽  
Attilio Parisi ◽  
Marco Chiera ◽  
Nicola Barsotti ◽  
Claudia Cerulli ◽  
...  

The present narrative review aims to highlight the possible effects manual therapies could have on cells and mitochondria, as these effects could improve athletic performance management. To this aim, this review summarizes the relationship between mechanical stimulation, with a special focus on physical activity, and cell response based on the most recent mechanobiology findings. Mechanobiology analyzes how cells respond to mechanical stressors coming from the environment. Indeed, endogenous (e.g., blood pressure, heartbeat and gastrointestinal motility) and exogenous (e.g., physical activity and manual therapies) stimuli can induce biochemical and epigenetic modifications that alter protein synthesis with heavy consequences on cell behavior. Mechanical stress can also influence mitochondrial behavior (i.e., biogenesis, autophagy, fusion, fission and energy production), sarcoplasmic response and calcium ion (Ca2+) flux. Since manual therapies have been shown to affect the extracellular matrix, which represents a primary source of mechanical stress that may alter both the cytoskeleton and mitochondrial metabolism, it is conceivable manual therapies could also affect cellular and mitochondrial behavior. Lastly, by suggesting possible directions for future laboratory and clinical studies, the authors expect this review to inspire further research on how manual therapies could affect bioenergetic metabolism and, thus, athletic performance.


Sign in / Sign up

Export Citation Format

Share Document