partial heating
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 30)

H-INDEX

13
(FIVE YEARS 3)

Author(s):  
Zelalem Abathun Mehari ◽  
Jingtao Han

With the growing demand for rectangular and square hollow steel sections in the last few decades, the cold roll forming process has become a widely acknowledged hollow sections manufacturing method; however, residual stress generated during the roll forming process is one of the primary concerns on roll-formed products. In this regard, several researchers have conducted numerical and experimental investigations of residual stress distributions on roll-formed steel sections. However, most of the studies found in the literature have been confined to the measurement of residual surface stresses. On the other hand, experimental studies conducted on fatigue and load-carrying capacity of hollow structural steels have shown that there is indeed a simple relation between the through-thickness residual stress distributions and mechanical properties of structures. Thus, this paper employed a proper numerical modelling procedure using LS-DYNA’s finite element code to explore through-thickness residual stress distributions generated during the roll forming process of rectangular and square hollow steel sections from different material grades. Moreover, a small-scale parametric study was conducted to explore the effects of the partial heating roll forming method on through-the-thickness residual stress distributions to satisfy the growing demand for residual stress-free roll-formed products.


Author(s):  
Xilu Zhao ◽  
Chenghai Kong ◽  
Yang Yang ◽  
Ichiro Hagiwara

Abstract Current vehicle energy absorbers face two problems during a collision in that there is only a 70% collapse in length and there is a high initial peak load. These problems arise because the presently used energy-absorbing column is primitive from the point of view of origami. We developed a column called the Reversed Spiral Origami Structure (RSO), which solves the above two problems. However, in the case of existing technology of the RSO, the molding cost of hydroforming is too expensive for application to a real vehicle structure. We therefore conceive a new structure, named the Reversed Torsion Origami Structure (RTO), which has excellent energy absorption in simulation. We can thus develop a manufacturing system for the RTO cheaply. Excellent results are obtained in a physical experiment. The RTO can replace conventional energy absorbers and is expected to be widely used in not only automobile structures but also building structures.


2021 ◽  
Author(s):  
Yang Yang ◽  
Xilu Zhao ◽  
Ichiro Hagiwara

Abstract In the crash collision, the vehicle energy absorbers play an important role in the energy absorbed performance. Current vehicle energy absorbers have two defects during collision, such as only 70 % collapsed in its length and high initial peak load. It is because present energy absorbed column is the most primitive from the point of Origami structure. We developed the column so called Reversed Spiral Origami Structure; RSO which solves these 2 defects. However, for RSO, the manufacturing cost of hydroforming in the existing technology is too expensive to be applied in real vehicle structure. To address the problems, we have developed a new molding method called “Partial-heating torsion molding method”. And we have developed RTO (Reversed Torsion Origami Structure) by this new molding method at a very low cost. We show this RTO also solves the two defects of the present vehicle absorbers by not only simulation but also experiments. This structure is possible to replace conventional energy absorbers and it is expected to be widely used such as not only in automobile structures but also in building ones.


Author(s):  
Maxime Thonon ◽  
Gilles Fraisse ◽  
Laurent Zalewski ◽  
Mickael Pailha

2021 ◽  
Vol 321 ◽  
pp. 02004
Author(s):  
Zakaria Korei ◽  
Smail Benissaad

This research aims to investigate thermal and flow behaviors and entropy generation of magnetohydrodynamic Al2O3-Cu/water hybrid nanofluid in a lid-driven cavity having two rounded corners. A solver based on C ++ object-oriented language was developed where the finite volume was used. Parameter’s analysis is provided by varying Reynolds numbers (Re), Hartmann numbers (Ha), the volume fraction of hybrid nanofluid (ϕ), radii of the rounded corners. The findings show that reducing the radii of the rounded corners minimizes the irreversibility. Furthermore, the thermal conductivity and dynamic viscosity of hybrid nanofluid contribute to increasing the irreversibility. Finally, the entropy generation is decreased by increasing the Hartman number and increases by rising the Reynolds number.


2021 ◽  
Vol 312 ◽  
pp. 08022
Author(s):  
Davide Bonalumi ◽  
Antonio Giuffrida ◽  
Federico Sicali

This work investigates the performance of a supercritical CO2 cycle as the bottoming cycle of a commercial gas turbine with 4.7 MW of electric power output. In detail, the partial heating cycle is the layout chosen for the interesting trade-off between heat recovery and cycle efficiency with a limited number of components. Single-stage radial turbomachines are selected according to the theory of similitude. In particular, the compressor is a troublesome turbomachine as it works near the critical point where significant variations of the CO2 properties occur. Efficiency values for turbomachinery are not fixed at first glance but result from actual size and running conditions, based on flow rates, enthalpy variations as well as rotational speeds. In addition, a limit is set for the machine Mach numbers in order to avoid heavily loaded turbomachinery. The thermodynamic study of the bottoming cycle is carried out by means of the mass and energy balance equations. A parametric analysis is carried out with particular attention to a number of specific parameters. Considering the power output calculated for the supercritical CO2 cycle, economic calculations are also carried out and the related costs compared to those specific of organic Rankine cycles with similar power output.


Sign in / Sign up

Export Citation Format

Share Document