discrete time delay
Recently Published Documents


TOTAL DOCUMENTS

345
(FIVE YEARS 43)

H-INDEX

29
(FIVE YEARS 6)

Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3266
Author(s):  
Milen Borisov ◽  
Neli Dimitrova ◽  
Plamena Zlateva

This paper is devoted to a mathematical model for phenol and p-cresol mixture degradation in a continuously stirred bioreactor. The biomass specific growth rate is presented as sum kinetics with interaction parameters (SKIP). A discrete time delay is introduced and incorporated into the biomass growth response. These two aspects—the mutual influence of the two substrates and the natural biological time delay in the biomass growth rate—are new in the scientific literature concerning bioreactor (chemostat) models. The equilibrium points of the model are determined and their local asymptotic stability as well as the occurrence of local Hopf bifurcations are studied in dependence on the delay parameter. The existence and uniqueness of positive solutions are established, and the global stabilizability of the model dynamics is proved for certain values of the delay. Numerical simulations illustrate the global behavior of the model solutions as well as the transient oscillations as a result of the Hopf bifurcation. The performed theoretical analysis and computer simulations can be successfully used to better understand the biodegradation dynamics of the chemical compounds in the bioreactor and to predict and control the system behavior in real life conditions.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Kaushik Dehingia ◽  
Hemanta Kumar Sarmah ◽  
Yamen Alharbi ◽  
Kamyar Hosseini

AbstractIn this study, we discuss a cancer model considering discrete time-delay in tumor-immune interaction and stimulation processes. This study aims to analyze and observe the dynamics of the model along with variation of vital parameters and the delay effect on anti-tumor immune responses. We obtain sufficient conditions for the existence of equilibrium points and their stability. Existence of Hopf bifurcation at co-axial equilibrium is investigated. The stability of bifurcating periodic solutions is discussed, and the time length for which the solutions preserve the stability is estimated. Furthermore, we have derived the conditions for the direction of bifurcating periodic solutions. Theoretically, it was observed that the system undergoes different states if we vary the system’s parameters. Some numerical simulations are presented to verify the obtained mathematical results.


Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2149
Author(s):  
Joel Perez Padron ◽  
Jose Paz Perez ◽  
José Javier Pérez Díaz ◽  
Atilano Martinez Huerta

In this research paper, we solve the problem of synchronization and anti-synchronization of chaotic systems described by discrete and time-delayed variable fractional-order differential equations. To guarantee the synchronization and anti-synchronization, we use the well-known PID (Proportional-Integral-Derivative) control theory and the Lyapunov–Krasovskii stability theory for discrete systems of a variable fractional order. We illustrate the results obtained through simulation with examples, in which it can be seen that our results are satisfactory, thus achieving synchronization and anti-synchronization of chaotic systems of a variable fractional order with discrete time delay.


Author(s):  
Joel Perez P. ◽  
J. Javier Perez D. ◽  
Jose P. Perez ◽  
Atilano Martinez Huerta

In this research article we solve the problem of synchronization and anti-synchronization of chaotic systems described by discrete and time-delayed variable fractional order differential equations. To guarantee the synchronization and anti-synchronization of these systems, we use the well-known PID control theory and the Lyapunov-Krasovskii stability theory for discrete systems of variable fractional order.We illustrate the results obtained through simulation with examples, in which it can be seen that our results are satisfactory, thus achieving synchronization and anti-synchronization of chaotic systems of variable fractional order with discrete time delay.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 257
Author(s):  
Abraham J. Arenas ◽  
Gilberto González-Parra ◽  
Jhon J. Naranjo ◽  
Myladis Cogollo ◽  
Nicolás De La Espriella

We propose a mathematical model based on a set of delay differential equations that describe intracellular HIV infection. The model includes three different subpopulations of cells and the HIV virus. The mathematical model is formulated in such a way that takes into account the time between viral entry into a target cell and the production of new virions. We study the local stability of the infection-free and endemic equilibrium states. Moreover, by using a suitable Lyapunov functional and the LaSalle invariant principle, it is proved that if the basic reproduction ratio is less than unity, the infection-free equilibrium is globally asymptotically stable. In addition, we designed a non-standard difference scheme that preserves some relevant properties of the continuous mathematical model.


Author(s):  
Juan G. Rueda-Escobedo ◽  
Emilia Fridman ◽  
Johannes Schiffer

2020 ◽  
Vol 30 (16) ◽  
pp. 2050244
Author(s):  
Xin Zhang ◽  
Renxiang Shi ◽  
Ruizhi Yang ◽  
Zhangzhi Wei

This work investigates a prey–predator model with Beddington–DeAngelis functional response and discrete time delay in both theoretical and numerical ways. Firstly, we incorporate into the system a discrete time delay between the capture of the prey by the predator and its conversion to predator biomass. Moreover, by taking the delay as a bifurcation parameter, we analyze the stability of the positive equilibrium in the delayed system. We analytically prove that the local Hopf bifurcation critical values are neatly paired, and each pair is joined by a bounded global Hopf branch. Also, we show that the predator becomes extinct with an increase of the time delay. Finally, before the extinction of the predator, we find the abundance of dynamical complexity, such as supercritical Hopf bifurcation, using the numerical continuation package DDE-BIFTOOL.


Sign in / Sign up

Export Citation Format

Share Document