global nonexistence
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 15)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 66 (3) ◽  
pp. 553-566
Author(s):  
Abita Rahmoune ◽  
Benyattou Benabderrahmane

"In this paper, we consider a class of quasi-linear parabolic equations with variable exponents, $$a\left( x,t\right) u_{t}-\Delta _{m\left( .\right) }u=f_{p\left( .\right)}\left( u\right)$$ in which $f_{p\left( .\right)}\left( u\right)$ the source term, $a(x,t)>0$ is a nonnegative function, and the exponents of nonlinearity $m(x)$, $p(x)$ are given measurable functions. Under suitable conditions on the given data, a finite-time blow-up result of the solution is shown if the initial datum possesses suitable positive energy, and in this case, we precise estimate for the lifespan $T^{\ast }$ of the solution. A blow-up of the solution with negative initial energy is also established."


Author(s):  
Vasileios Ektor Papoulias

AbstractWe use the highly symmetric Stenzel Calabi–Yau structure on $$T^{\star }S^{4}$$ T ⋆ S 4 as a testing ground for the relationship between the Spin(7) instanton and Hermitian–Yang–Mills (HYM) equations. We reduce both problems to tractable ODEs and look for invariant solutions. In the abelian case, we establish local equivalence and prove a global nonexistence result. We analyze the nonabelian equations with structure group SO(3) and construct the moduli space of invariant Spin(7) instantons in this setting. This is comprised of two 1-parameter families—one of them explicit—of irreducible Spin(7) instantons. Each carries a unique HYM connection. We thus negatively resolve the question regarding the equivalence of the two gauge theoretic PDEs. The HYM connections play a role in the compactification of this moduli space, exhibiting a removable singularity phenomenon that we aim to further examine in future work.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Khaled Zennir ◽  
Tosiya Miyasita ◽  
Perikles Papadopoulos

Author(s):  
Yaojun YE

In this paper, we study the initial-boundary value problem of a class of degenerate quasilinear hyperbolic equation with logarithmic nonlinearity. By applying Galerkin method and the logarithmic Sobolev inequality, we prove the existence of global weak solutions for this problem. Meanwhile,the global nonexistence of solutions is verified by means of the concavity analysis when the initial energy is positive and appropriately bounded.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Xiaoqiang Dai ◽  
Wenke Li

<p style='text-indent:20px;'>In this paper, we study the initial boundary value problem of the visco-elastic dynamical system with the nonlinear source term in control system. By variational arguments and an improved convexity method, we prove the global nonexistence of solution, and we also give a sharp condition for global existence and nonexistence.</p>


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Mingqi Xiang ◽  
Die Hu

<p style='text-indent:20px;'>In this paper, we deal with the initial boundary value problem of the following fractional wave equation of Kirchhoff type</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} u_{tt}+M([u]_{\alpha, 2}^2)(-\Delta)^{\alpha}u+(-\Delta)^{s}u_{t} = \int_{0}^{t}g(t-\tau)(-\Delta)^{\alpha}u(\tau)d\tau+\lambda|u|^{q -2}u, \end{align*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ M:[0, \infty)\rightarrow (0, \infty) $\end{document}</tex-math></inline-formula> is a nondecreasing and continuous function, <inline-formula><tex-math id="M2">\begin{document}$ [u]_{\alpha, 2} $\end{document}</tex-math></inline-formula> is the Gagliardo-seminorm of <inline-formula><tex-math id="M3">\begin{document}$ u $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M4">\begin{document}$ (-\Delta)^\alpha $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ (-\Delta)^s $\end{document}</tex-math></inline-formula> are the fractional Laplace operators, <inline-formula><tex-math id="M6">\begin{document}$ g:\mathbb{R}^+\rightarrow \mathbb{R}^+ $\end{document}</tex-math></inline-formula> is a positive nonincreasing function and <inline-formula><tex-math id="M7">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula> is a parameter. First, the local and global existence of solutions are obtained by using the Galerkin method. Then the global nonexistence of solutions is discussed via blow-up analysis. Our results generalize and improve the existing results in the literature.</p>


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Enzo Vitillaro

<p style='text-indent:20px;'>The aim of this paper is to give global nonexistence and blow–up results for the problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{cases} u_{tt}-\Delta u+P(x,u_t) = f(x,u) \qquad &amp;\text{in $(0,\infty)\times\Omega$,}\\ u = 0 &amp;\text{on $(0,\infty)\times \Gamma_0$,}\\ u_{tt}+\partial_\nu u-\Delta_\Gamma u+Q(x,u_t) = g(x,u)\qquad &amp;\text{on $(0,\infty)\times \Gamma_1$,}\\ u(0,x) = u_0(x),\quad u_t(0,x) = u_1(x) &amp; \text{in $\overline{\Omega}$,} \end{cases} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is a bounded open <inline-formula><tex-math id="M2">\begin{document}$ C^1 $\end{document}</tex-math></inline-formula> subset of <inline-formula><tex-math id="M3">\begin{document}$ {\mathbb R}^N $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M4">\begin{document}$ N\ge 2 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M5">\begin{document}$ \Gamma = \partial\Omega $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M6">\begin{document}$ (\Gamma_0,\Gamma_1) $\end{document}</tex-math></inline-formula> is a partition of <inline-formula><tex-math id="M7">\begin{document}$ \Gamma $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M8">\begin{document}$ \Gamma_1\not = \emptyset $\end{document}</tex-math></inline-formula> being relatively open in <inline-formula><tex-math id="M9">\begin{document}$ \Gamma $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M10">\begin{document}$ \Delta_\Gamma $\end{document}</tex-math></inline-formula> denotes the Laplace–Beltrami operator on <inline-formula><tex-math id="M11">\begin{document}$ \Gamma $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M12">\begin{document}$ \nu $\end{document}</tex-math></inline-formula> is the outward normal to <inline-formula><tex-math id="M13">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula>, and the terms <inline-formula><tex-math id="M14">\begin{document}$ P $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M15">\begin{document}$ Q $\end{document}</tex-math></inline-formula> represent nonlinear damping terms, while <inline-formula><tex-math id="M16">\begin{document}$ f $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M17">\begin{document}$ g $\end{document}</tex-math></inline-formula> are nonlinear source terms. These results complement the analysis of the problem given by the author in two recent papers, dealing with local and global existence, uniqueness and well–posedness.</p>


Sign in / Sign up

Export Citation Format

Share Document