polynomial sequences
Recently Published Documents


TOTAL DOCUMENTS

179
(FIVE YEARS 41)

H-INDEX

11
(FIVE YEARS 2)

Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3213
Author(s):  
Masato Shinjo ◽  
Tan Wang ◽  
Masashi Iwasaki ◽  
Yoshimasa Nakamura

The block cyclic reduction method is a finite-step direct method used for solving linear systems with block tridiagonal coefficient matrices. It iteratively uses transformations to reduce the number of non-zero blocks in coefficient matrices. With repeated block cyclic reductions, non-zero off-diagonal blocks in coefficient matrices incrementally leave the diagonal blocks and eventually vanish after a finite number of block cyclic reductions. In this paper, we focus on the roots of characteristic polynomials of coefficient matrices that are repeatedly transformed by block cyclic reductions. We regard each block cyclic reduction as a composition of two types of matrix transformations, and then attempt to examine changes in the existence range of roots. This is a block extension of the idea presented in our previous papers on simple cyclic reductions. The property that the roots are not very scattered is a key to accurately solve linear systems in floating-point arithmetic. We clarify that block cyclic reductions do not disperse roots, but rather narrow their distribution, if the original coefficient matrix is symmetric positive or negative definite.


Author(s):  
Ayan Nath ◽  
Abhishek Jha

Cilleruelo conjectured that if [Formula: see text] is an irreducible polynomial of degree [Formula: see text] then, [Formula: see text] In this paper, we investigate the analog of prime arguments, namely, [Formula: see text] where [Formula: see text] denotes a prime and obtain nontrivial lower bounds on it. Further, we also show some results regarding the greatest prime divisor of [Formula: see text]


2021 ◽  
Vol 10 (1) ◽  
pp. 153-165
Author(s):  
Tian-Xiao He ◽  
José L. Ramírez

Abstract In this paper we introduce different families of numerical and polynomial sequences by using Riordan pseudo involutions and Sheffer polynomial sequences. Many examples are given including dual of Hermite numbers and polynomials, dual of Bell numbers and polynomials, among other. The coefficients of some of these polynomials are related to the counting of different families of set partitions and permutations. We also studied the dual of Catalan numbers and dual of Fuss-Catalan numbers, giving several combinatorial identities.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 964
Author(s):  
Francesco Aldo Costabile ◽  
Maria Italia Gualtieri ◽  
Anna Napoli

An approach to general bivariate Appell polynomials based on matrix calculus is proposed. Known and new basic results are given, such as recurrence relations, determinant forms, differential equations and other properties. Some applications to linear functional and linear interpolation are sketched. New and known examples of bivariate Appell polynomial sequences are given.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Farid Bencherif ◽  
Rachid Boumahdi ◽  
Tarek Garici

Abstract Using umbral calculus, we establish a symmetric identity for any sequence of polynomials satisfying A′ n +1(x) = (n + 1)An (x) with A 0(x) a constant polynomial. This identity allows us to obtain in a simple way some known relations involving Apostol-Bernoulli polynomials, Apostol-Euler polynomials and generalized Bernoulli polynomials attached to a primitive Dirichlet character.


Author(s):  
María Ángeles García-Ferrero ◽  
◽  
David Gómez-Ullate ◽  
Robert Milson ◽  
◽  
...  

Exceptional orthogonal polynomials are families of orthogonal polynomials that arise as solutions of Sturm-Liouville eigenvalue problems. They generalize the classical families of Hermite, Laguerre, and Jacobi polynomials by allowing for polynomial sequences that miss a finite number of ''exceptional'' degrees. In this paper we introduce a new construction of multi-parameter exceptional Legendre polynomials by considering the isospectral deformation of the classical Legendre operator. Using confluent Darboux transformations and a technique from inverse scattering theory, we obtain a fully explicit description of the operators and polynomials in question. The main novelty of the paper is the novel construction that allows for exceptional polynomial families with an arbitrary number of real parameters.


Sign in / Sign up

Export Citation Format

Share Document