pointing movement
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 10)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Benjamin Mathieu ◽  
Antonin Abillama ◽  
Malvina Martinez ◽  
Laurence Mouchnino ◽  
Jean Blouin

Previous studies have shown that the sensory modality used to identify the position of proprioceptive targets hidden from sight, but frequently viewed, influences the type of the body representation employed for reaching them with the finger. The question then arises as to whether this observation also applies to proprioceptive targets which are hidden from sight, and rarely, if ever, viewed. We used an established technique for pinpointing the type of body representation used for the spatial encoding of targets which consisted of assessing the effect of peripheral gaze fixation on the pointing accuracy. More precisely, an exteroceptive, visually dependent, body representation is thought to be used if gaze deviation induces a deviation of the pointing movement. Three light-emitting diodes (LEDs) were positioned at the participants' eye level at -25 deg, 0 deg and +25 deg with respect to the cyclopean eye. Without moving the head, the participant fixated the lit LED before the experimenter indicated one of the three target head positions: topmost point of the head (vertex) and two other points located at the front and back of the head. These targets were either verbal-cued or tactile-cued. The goal of the subjects (n=27) was to reach the target with their index finger. We analysed the accuracy of the movements directed to the topmost point of the head, which is a well-defined, yet out of view anatomical point. Based on the possibility of the brain to create visual representations of the body areas that remain out of view, we hypothesized that the position of the vertex is encoded using an exteroceptive body representation, both when verbally or tactile-cued. Results revealed that the pointing errors were biased in the opposite direction of gaze fixation for both verbal-cued and tactile-cued targets, suggesting the use of a vision-dependent exteroceptive body representation. The enhancement of the visual body representations by sensorimotor processes was suggested by the greater pointing accuracy when the vertex was identified by tactile stimulation compared to verbal instruction. Moreover, we found in a control condition that participants were more accurate in indicating the position of their own vertex than the vertex of other people. This result supports the idea that sensorimotor experiences increase the spatial resolution of the exteroceptive body representation. Together, our results suggest that the position of rarely viewed body parts are spatially encoded by an exteroceptive body representation and that non-visual sensorimotor processes are involved in the constructing of this representation.


2021 ◽  
pp. 174702182110480
Author(s):  
Andras Matuz ◽  
Dimitri Van der Linden ◽  
Andras N Zsido ◽  
Arpad Csatho

Top-down cognitive control seems to be sensitive to the detrimental effects of fatigue induced by time-on-task (ToT). The planning and preparation of the motor responses may be especially vulnerable to ToT. Yet, effects of ToT specific to the different phases of movements have received little attention. Therefore, in three experiments, we assessed the effect of ToT on a mouse-pointing task. In Experiment 1, there were 16 possible target positions with variable movement directions. In Experiment 2, the layout of the targets was simplified. In Experiment 3, using cuing conditions we examined whether the effects of ToT on movement preparation and execution were caused by an increased orientation deficit or decreased phasic alertness. In each experiment, initiation of movement (preparatory phase) became slower, movement execution became faster and overall response time remained constant with increasing ToT. There was, however, no significant within-person association between the preparatory and execution phases. In Experiments 1 and 2, we found a decreasing movement time/movement error ratio, suggesting a more impulsive execution of the pointing movement. In addition, ToT was also accompanied with imprecise movement execution as indicated by the increased errors, mainly in Experiment 2. The results of Experiment 3 indicated that ToT did not induce orientation and phasic alerting deficits but rather was accompanied by decreased tonic alertness.


2021 ◽  
Vol 11 ◽  
Author(s):  
Thomas Jacquet ◽  
Bénédicte Poulin-Charronnat ◽  
Patrick Bard ◽  
Romuald Lepers

The effects of mental fatigue on both cognitive and physical performance are well described in the literature, but the recovery aspects of mental fatigue have been less investigated. The present study aimed to fill this gap by examining the persistence of mental fatigue on behavior and electrophysiological mechanisms. Fifteen participants performed an arm-pointing task consisting of reaching a target as fast as possible, before carrying out a 32-min cognitively demanding task [Time Load Dual Back (TLDB) task], and immediately, 10 and 20 min after completion of the TLDB task. During the experiment, electroencephalography was continuously recorded. The significant increase in mental fatigue feeling after the TLDB task was followed by a decrease during the 20 min of recovery without returning to premeasurement values. Brain oscillations recorded at rest during the recovery period showed an increase in both theta and alpha power over time, suggesting a persistence of mental fatigue. Arm-pointing movement duration increased gradually over time during the recovery period, indicating that behavioral performance remained impaired 20 min after the end of the cognitively demanding task. To conclude, subjective measurements indicated a partial recovery of mental fatigue following a cognitively demanding task, whereas electrophysiological and behavioral markers suggested that the effects of mental fatigue persisted for at least 20 min. While the subjective evaluation of mental fatigue is a very practical way to attest the presence of mental fatigue, electrophysiological and behavioral measures seem more relevant to evaluate the time course of mental fatigue effects.


Motor Control ◽  
2021 ◽  
Vol 25 (1) ◽  
pp. 44-58
Author(s):  
Joy Khayat ◽  
Stéphane Champely ◽  
Ahmad Diab ◽  
Ahmad Rifai Sarraj ◽  
Patrick Fargier

The present study aimed at examining the effect of mental calculation and number comparison on motor performance measured as the movement time of a fast manual-pointing movement. Three experiments, involving a total number of 65 undergraduate subjects, examined the effect of mental subtraction (complex) and, respectively, of (a) mental addition (simple or complex), (b) mental multiplication (simple or complex), and (c) the comparison of dot sets and number comparison. Each number was written in Arabic. The movement times were analyzed by using a multilevel linear mixed-effect model. The results showed significant improvement of manual-pointing movement performance only after the complex calculations and after number comparison. Possible implication of attentional mechanisms specific to this arithmetical activity is further discussed.


2020 ◽  
Vol 5 (1) ◽  
pp. 65-75
Author(s):  
Adhe Oktaria Bustomi ◽  
Taufiq Hidayah ◽  
Ardo Okilanda ◽  
Dede Dwiansyah Putra

This study aimed to analyze pointing movement skill of Semarang Petanque athlete. This study was descriptive quantitative design which described systematically facts and characteristics of pointing movement by Semarang Petaque Athlete.  The pointing movements as data were descriptive. This analysis used descriptive statistic which measured frequency. This data was taken from Biomechanics aspect of 3 pointing movements of Petaque by 8 men and women players of Semarang city. They were; (1) holding a boule, (2) foot position, and (3) throwing the boule. The measurement was carried out by two national coaches and one international coach of Petaque. The result shows that; 1) the average value of holding a boule is 4.4 or 88% of percentage which categorized as very good, 2) the average value of foot position is 4.6 or 92% of percentage which categorized as very good, and 3) the average value of throwing a boule is 3.72 or 74.4% of percentage which categorized as good. Overall movements point out good category with 88% of percentage.    


2019 ◽  
Vol 11 (3) ◽  
pp. 18-39
Author(s):  
Bashar I. Ahmad ◽  
Chrisminder Hare ◽  
Harpreet Singh ◽  
Arber Shabani ◽  
Briana Lindsay ◽  
...  

Predictive touch technology aims to improve the usability and performance of in-vehicle displays under the influence of perturbations due to the road and driving conditions. It fundamentally relies on predicting and early in the freehand pointing movement, the interface item the user intends to select, using a novel Bayesian inference framework. This article focusses on evaluating facilitation schemes for selecting the predicted interface component whilst driving, and without physically touching the display, thus touchless. Initially, several viable schemes were identified in a brainstorming session followed by an expert workshop with 12 participants. A simulator study with 24 participants using a prototype predictive touch system was then conducted. A number of collected quantitative and qualitative measures show that immediate mid-air selection, where the system autonomously auto-selects the predicted interface component, may be the most promising strategy for predictive touch.


Sign in / Sign up

Export Citation Format

Share Document