algebra of functions
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 10)

H-INDEX

14
(FIVE YEARS 1)

Author(s):  
Andrei Ionov ◽  
Dylan Pentland

We study the interaction between the block decompositions of reduced enveloping algebras in positive characteristic, the Poincaré-Birkhoff-Witt (PBW) filtration, and the nilpotent cone. We provide two natural versions of the PBW filtration on the block subalgebra [Formula: see text] of the restricted universal enveloping algebra [Formula: see text] and show these are dual to each other. We also consider a shifted PBW filtration for which we relate the associated graded algebra to the algebra of functions on the Frobenius neighborhood of [Formula: see text] in the nilpotent cone and the coinvariants algebra corresponding to [Formula: see text]. In the case of [Formula: see text] in characteristic [Formula: see text] we determine the associated graded algebras of these filtrations on block subalgebras of [Formula: see text]. We also apply this to determine the structure of the adjoint representation of [Formula: see text].


2021 ◽  
pp. 1-5
Author(s):  
V. V. BAVULA

Abstract Let K be a field of arbitrary characteristic, $${\cal A}$$ be a commutative K-algebra which is a domain of essentially finite type (e.g., the algebra of functions on an irreducible affine algebraic variety), $${a_r}$$ be its Jacobian ideal, and $${\cal D}\left( {\cal A} \right)$$ be the algebra of differential operators on the algebra $${\cal A}$$ . The aim of the paper is to give a simplicity criterion for the algebra $${\cal D}\left( {\cal A} \right)$$ : the algebra $${\cal D}\left( {\cal A} \right)$$ is simple iff $${\cal D}\left( {\cal A} \right)a_r^i{\cal D}\left( {\cal A} \right) = {\cal D}\left( {\cal A} \right)$$ for all i ≥ 1 provided the field K is a perfect field. Furthermore, a simplicity criterion is given for the algebra $${\cal D}\left( R \right)$$ of differential operators on an arbitrary commutative algebra R over an arbitrary field. This gives an answer to an old question to find a simplicity criterion for algebras of differential operators.


2021 ◽  
pp. 2150016
Author(s):  
Catherine Meusburger ◽  
Derek K. Wise

We generalize gauge theory on a graph so that the gauge group becomes a finite-dimensional ribbon Hopf algebra, the graph becomes a ribbon graph, and gauge-theoretic concepts such as connections, gauge transformations and observables are replaced by linearized analogs. Starting from physical considerations, we derive an axiomatic definition of Hopf algebra gauge theory, including locality conditions under which the theory for a general ribbon graph can be assembled from local data in the neighborhood of each vertex. For a vertex neighborhood with [Formula: see text] incoming edge ends, the algebra of non-commutative ‘functions’ of connections is dual to a two-sided twist deformation of the [Formula: see text]-fold tensor power of the gauge Hopf algebra. We show these algebras assemble to give an algebra of functions and gauge-invariant subalgebra of ‘observables’ that coincide with those obtained in the combinatorial quantization of Chern–Simons theory, thus providing an axiomatic derivation of the latter. We then discuss holonomy in a Hopf algebra gauge theory and show that for semisimple Hopf algebras this gives, for each path in the embedded graph, a map from connections into the gauge Hopf algebra, depending functorially on the path. Curvatures — holonomies around the faces canonically associated to the ribbon graph — then correspond to central elements of the algebra of observables, and define a set of commuting projectors onto the subalgebra of observables on flat connections. The algebras of observables for all connections or for flat connections are topological invariants, depending only on the topology, respectively, of the punctured or closed surface canonically obtained by gluing annuli or discs along edges of the ribbon graph.


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1241
Author(s):  
Alexey Zhirabok

The paper considers the problem of invariance with respect to the unknown input for discrete-time nonlinear dynamic systems. To solve the problem, the algebraic approaches, called algebra of functions and logic–dynamic approach, are used. Such approaches assume that description of the system may contain non-differentiable functions. Necessary and sufficient conditions of solvability the problem are obtained. Moreover, procedures which find the appropriate functions and matrices are developed. Some applications of such invariance in fault detection and isolation, disturbance decoupling problem, and fault-tolerant control are considered.


2020 ◽  
Vol 35 (23) ◽  
pp. 2020001 ◽  
Author(s):  
F. M. Ciaglia ◽  
F. Di Cosmo ◽  
A. Ibort ◽  
G. Marmo ◽  
L. Schiavone

The formulation of covariant brackets on the space of solutions to a variational problem is analyzed in the framework of contact geometry. It is argued that the Poisson algebra on the space of functionals on fields should be read as a Poisson subalgebra within an algebra of functions equipped with a Jacobi bracket on a suitable contact manifold.


Author(s):  
Eckhard Meinrenken ◽  
Jeffrey Pike

Abstract Given a double vector bundle $D\to M$, we define a bigraded bundle of algebras $W(D)\to M$ called the “Weil algebra bundle”. The space ${\mathcal{W}}(D)$ of sections of this algebra bundle ”realizes” the algebra of functions on the supermanifold $D[1,1]$. We describe in detail the relations between the Weil algebra bundles of $D$ and those of the double vector bundles $D^{\prime},\ D^{\prime\prime}$ obtained from $D$ by duality operations. We show that ${\mathcal{V}\mathcal{B}}$-algebroid structures on $D$ are equivalent to horizontal or vertical differentials on two of the Weil algebras and a Gerstenhaber bracket on the 3rd. Furthermore, Mackenzie’s definition of a double Lie algebroid is equivalent to compatibilities between two such structures on any one of the three Weil algebras. In particular, we obtain a ”classical” version of Voronov’s result characterizing double Lie algebroid structures. In the case that $D=TA$ is the tangent prolongation of a Lie algebroid, we find that ${\mathcal{W}}(D)$ is the Weil algebra of the Lie algebroid, as defined by Mehta and Abad–Crainic. We show that the deformation complex of Lie algebroids, the theory of IM forms and IM multi-vector fields, and 2-term representations up to homotopy all have natural interpretations in terms of our Weil algebras.


Author(s):  
Goro Ishiki ◽  
Takaki Matsumoto

Abstract Diffeomorphisms can be seen as automorphisms of the algebra of functions. In matrix regularization, functions on a smooth compact manifold are mapped to finite-size matrices. We consider how diffeomorphisms act on the configuration space of the matrices through matrix regularization. For the case of the fuzzy $$S^2$, we construct the matrix regularization in terms of the Berezin–Toeplitz quantization. By using this quantization map, we define diffeomorphisms on the space of matrices. We explicitly construct the matrix version of holomorphic diffeomorphisms on $$S^2$. We also propose three methods of constructing approximate invariants on the fuzzy $$S^2$. These invariants are exactly invariant under area-preserving diffeomorphisms and only approximately invariant (i.e. invariant in the large-$$N$ limit) under general diffeomorphisms.


2020 ◽  
Vol 8 ◽  
Author(s):  
FRANCIS BROWN

We introduce a new family of real-analytic modular forms on the upper-half plane. They are arguably the simplest class of ‘mixed’ versions of modular forms of level one and are constructed out of real and imaginary parts of iterated integrals of holomorphic Eisenstein series. They form an algebra of functions satisfying many properties analogous to classical holomorphic modular forms. In particular, they admit expansions in $q,\overline{q}$ and $\log |q|$ involving only rational numbers and single-valued multiple zeta values. The first nontrivial functions in this class are real-analytic Eisenstein series.


Sign in / Sign up

Export Citation Format

Share Document