generator type
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 18)

H-INDEX

9
(FIVE YEARS 3)

2021 ◽  
Vol 8 (1) ◽  
pp. 5
Author(s):  
Zhixi Qian ◽  
Thomas R. Hanley ◽  
Lisa M. Reece ◽  
James F. Leary ◽  
Eugene D. Boland ◽  
...  

There is an identified need for point-of-care diagnostic systems for detecting and counting specific rare types of circulating cells in blood. By adequately labeling such cells with immunomagnetic beads and quantum dots, they can be efficiently collected magnetically for quantification using fluorescence methods. Automation of this process requires adequate mixing of the labeling materials with blood samples. A static mixing device can be employed to improve cell labeling efficiency and eliminate error-prone laboratory operations. Computational fluid dynamics (CFD) were utilized to simulate the flow of a labeling-materials/blood mixture through a 20-stage in-line static mixer of the interfacial-surface-generator type. Optimal fluid mixing conditions were identified and tested in a magnetic bead/tumor cell model, and it was found that labeled cells could be produced at 1.0 mL/min flow rate and fed directly into an in-line magnetic trap. The trap design consists of a dual flow channel with three bends and a permanent magnet positioned at the outer curve of each bend. The capture of labeled cells in the device was simulated using CFD, finite-element analysis and magnetophoretic mobility distributions of labeled cells. Testing with cultured CRL14777 human melanoma cells labeled with anti-CD146 1.5 μm diameter beads indicated that 90 ± 10% are captured at the first stage, and these cells can be captured when present in whole blood. Both in-line devices were demonstrated to function separately and together as predicted.


Author(s):  
Igor Razzhivin ◽  
Aleksey Suvorov ◽  
Mikhail Andreev ◽  
Alisher Askarov

Abstract The dominant trend of the modern energy is the use of generating plants based on renewable energy sources, among which the most common is a wind power plant based on doubly fed induction generator (Type 3 WT). The large-scale introduction of Type 3 WT into the modern power systems significantly changes their dynamic properties. There are problems with ensuring the basic condition of the reliability and the survivability of power systems – the stability. The study and solution of the indicated problems is possible only with the help of the mathematical modeling of a large-scale power systems which is currently being carried out with the help of widespread purely numerical software tools of calculations of modes and processes, which are characterized by various simplifications and limitations. For the properties and capabilities of software tools for studying stability issues, mathematical models of Type 3 WT, the so-called generic models, which also have simplifications and limitations, are adapted. In this article, the reliability of stability calculations of a real power system with Type 3 WT using software tools was evaluated, which allows to identify the influence of the applied simplifications and restrictions with a purely numerical approach on the quality of solving problems of assessing the stability of power systems with Type 3 WT. Also, the studies made it possible to identify the areas of the application of generic models of Type 3 WT as a part of the model of the real dimension power system, at which the greatest and least errors arise, as well as their causes. Such a comprehensive assessment becomes feasible due to the alternative approach proposed in the article, based on the use of a detail benchmark tool model instead of the full-scale data to compare the results of modeling.


Author(s):  
Bilal Abdullah Nasir

Presently, however, Hydroelectric is a source of power that can prove to be available to all, regardless of conditions such as weather. As history showed, a lot of development, as well as alterations, were made to this efficient supply of energy. Hydropower is a positive alternative energy source that nature provides, therefore, its effective usage is not prohibited. Although there are many disadvantages associated with the design and construction of a hydroelectric power plant, the advantageous features are even more enormous. This paper deals with construction and design aspects for the implementation of the small hydroelectric power station. The main parameters can be collected from the site. Then the turbine type and dimensions can be specified. The generator specifications,which is the main part in the system, for hydro-power stations can be obtained from the determination of turbine output power. These specifications involve mainly the rated power in KVA, the type of system, system frequency, the type of stator winding connection, rated load voltage, rated load current, load power factor, generator speed, method of the system cooling, and the generator type of excitation.


2021 ◽  
Vol 8 (1) ◽  
pp. e000739
Author(s):  
Marc Mac Giolla Eain ◽  
Andrew O'Sullivan ◽  
Mary Joyce ◽  
Ronan MacLoughlin

BackgroundThe COVID-19 pandemic has highlighted the need for alternative short-term, reliable means to aid in the treatment of patients requiring ventilatory support. Concurrent aerosol drug delivery is often prescribed to such patients. As such, this study examines one such short-term option, the disposable gas-powered transport ventilator to effectively deliver aerosol therapy. Factors such as aerosol generator type, patient breathing pattern, humidification and nebuliser position within the respiratory circuit were also examined.MethodsAerosol drug delivery characterisation was undertaken using two different disposable transport ventilators (DTVs). Two different nebuliser types, a closed circuit vibrating mesh nebuliser (VMN) and an open circuit jet nebuliser (JN), at different locations in a respiratory circuit, proximal and distal to an endotracheal tube (ETT), with and without passive humidification, were evaluated in simulated adult and paediatric patients.ResultsPlacement of a nebuliser proximal to the ETT (VMN: 25.19%–34.15% and JN: 3.14%–8.92%), and the addition of a heat and moisture exchange filter (VMN: 32.37%–40.43% and JN: 5.60%–9.91%) resulted in the largest potential lung dose in the adult patient model. Irrespective of nebuliser position and humidification in the respiratory circuit, use of the VMN resulted in the largest potential lung dose (%). A similar trend was recorded in the paediatric model data, where the largest potential lung dose was recorded with both nebuliser types placed proximal to the ETT (VMN: 8.12%–10.89% and JN: 2.15%–3.82%). However, the addition of a heat and moisture exchange filter had no statistically significant effect on the potential lung dose (%) a paediatric patient would receive (p>>0.05).ConclusionsThis study demonstrates that transport ventilators, such as DTVs, can be used concurrently with aerosol generators to effectively deliver aerosolised medication in both adult and paediatric patients.


2021 ◽  
Vol 14 (1) ◽  
pp. 16
Author(s):  
Wahyu Santoso ◽  
Herman Saputro ◽  
Husin Bugis

<p><em>Energy from fossil fuels consisting of petroleum, coal, natural gas containing raw material for energy fulfillment in Indonesia is still very central through the use of raw materials from renewable energy is still very low. In Indonesia the potential for renewable energy such as wind energy needs to be optimized. One of the uses of wind energy is through savonius wind turbine as electricity generators. Characteristics of savonius wind turbine with vertical axis rotors which gave a simple shape, and that able to control low speeds. This is in accordance with regions in Indonesi which have low average speeds.         This experimental study, aims to determine the description of wind potential and determine the performance of savonius wind turbines on the coast of Demak regency on the electrical energy produced. Savonius wind turbine used is made of galvalum material in the form of an S type rotor with diameter 1.1 m and height 1.4 m, using pulley transmission system with multiplication ratio 1:6 dan using generator type PMG 200 W. This research uses the method experiment. Data collection in the form of wind speed, humidity, temperature, rotor rotation speed, voltage and electric curret is carried out at 14.30 to 17.30 Western Indonesian Time. Data Analysis in this study uses quantitative descriptive analysis. The result showed the potential of wind on the coast of Demak regency have an average wind speed of 2,02 m/s with a temperature of 31</em><em>,</em><em>34 </em><em><sup>0</sup></em><em>C and humidity of 76,96. And the performance of the installed wind turbine produces the highest power 3.5 watt with an electric power coefficient of 0,181 and tip speed ratio around 1,75. From these result, the potensial of wind with performance savonius turbine can generate electricity used for pond lighting in the village Berahan Kulon Kecamatan Wedung. </em><em></em></p>


CFD letters ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 27-39
Author(s):  
Abdul Qoiyum Mohd Radzi ◽  
Noorazizi Mohd Samsuddin

Air wheel generator or wind turbine generator has capabilities in generating electricity even at the lowest speed. Recently, the Savonius wind turbine with combined wind deflector and housing that applied at the top of car roof. In this paper, the unidirectional vertical axis wind turbine with two blades of Savonius type and belting system have been numerically optimizes using Computational-Particle Swarm Optimization (CFD-PSO). The 5-step optimization was done systematically to determine the related formulation based on the geometrical dimension of wind turbine blade and design constraints. The simplified model of the classical cantilever beam was used in formulating the bending stress and deflection as a constraint. Then the simulation analysis in Matlab was performed using Particle Swarm Optimization (PSO) method in minimization the mass of blades. The current generation was compared to the initial design OPTION 1 for the blades with a mass of 1.3414 kg. From simulation analysis results, the researcher found OPTION 3 has m3 =0.8387 kg with 37.5% mass reduction of blades. The result of OPTION 3= [0.1 0.001] with belting unit were proposed to be used in prototype development that achieving the objective in minimization the mass of blades but not fulfil the minimum power and current generated caused by the existing generator type not enough rotational speed with minimum of 1400 for cut in speed for standard automotive application.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3178 ◽  
Author(s):  
Arcadio Perilla ◽  
José Luis Rueda Torres ◽  
Stelios Papadakis ◽  
Elyas Rakhshani ◽  
Mart van der Meijden ◽  
...  

During the last few years, electric power systems have undergone a widespread shift from conventional fossil-based generation toward renewable energy-based generation. Variable speed wind generators utilizing full-scale power electronics converters are becoming the preferred technology among other types of renewable-based generation, due to the high flexibility to implement different control functions that can support the stabilization of electrical power systems. This paper presents a fundamental study on the enhancement of transient stability in electrical power systems with increasing high share (i.e., above 50%) of power electronic interfaced generation. The wind generator type IV is taken as a representative form of power electronic interfaced generation, and the goal is to investigate how to mitigate the magnitude of the first swing while enhancing the damping of rotor angle oscillations triggered by major electrical disturbances. To perform such mitigation, this paper proposes a power-angle modulation (PAM) controller to adjust the post-fault active power response of the wind generator type IV, after a large disturbance occurs in the system. Based on a small size system, the PAM concept is introduced. The study is performed upon time-domain simulations and analytical formulations of the power transfer equations. Additionally, the IEEE 9 BUS system and the test model of Great Britain’s system are used to further investigate the performance of the PAM controller in a multi-machine context, as well as to perform a comparative assessment of the effect of different fault locations, and the necessary wind generators that should be equipped with PAM controllers.


Sign in / Sign up

Export Citation Format

Share Document