tangent moduli
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 8)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Antonion Korcari ◽  
Alayna E Loiselle ◽  
Mark R Buckley

Tendon injuries are very common and result in significant impairments in mobility and quality of life. During healing, tendons produce a scar at the injury site, characterized by abundant and disorganized extracellular matrix and by permanent deficits in mechanical integrity compared to healthy tendon. Although a significant amount of work has been done to understand the healing process of tendons and to develop potential therapeutics for tendon regeneration, there is still a significant gap in terms of assessing the direct effects of therapeutics on the functional and material quality specifically of the scar tissue, and thus, on the overall tendon healing process. In this study, we focused on characterizing the mechanical properties of only the scar tissue in flexor digitorum longus (FDL) tendons during the proliferative and remodeling healing phases and comparing these properties with the mechanical properties of the composite healing tissue. Our method was sensitive enough to identify significant differences in structural and material properties between the scar and tendon-scar composite tissues. To account for possible inaccuracies due to the small aspect ratio of scar tissue, we also applied inverse finite element analysis (iFEA) to compute mechanical properties based on simulated tests with accurate specimen geometries and boundary conditions. We found that the scar tissue linear tangent moduli calculated from iFEA were not significantly different from those calculated experimentally at all healing timepoints, validating our experimental findings, and suggesting the assumptions in our experimental calculations were accurate. Taken together, this study first demonstrates that due to the presence of uninjured stubs, testing composite healing tendons without isolating the scar tissue overestimates the material properties of the scar itself. Second, our scar isolation method promises to enable more direct assessment of how different treatment regimens (e.g., cellular ablation, biomechanical and/or biochemical stimuli, tissue engineered scaffolds) affect scar tissue function and material quality in multiple different types of tendons.


2021 ◽  
Author(s):  
Jiachen Li ◽  
Cheng Liu ◽  
Haiyan Hu ◽  
Shixiong Zhang

Abstract A new elasto-plastic thin shell finite element of the absolute nodal coordinate formulation (ANCF) allowing for large deformation and finite rotation is proposed based on the Kirchhoff-Love theory and layered plastic model. The von Mises yield criterion of plane-stress with linear isotropic hardening is adopted in constitutive description of elasto-plastic material. Owing to the plane-stress constraint, special treatment should be given to the stress update algorithm for plasticity. To accommodate the plasticity formulation, the Gauss-point layered integration is inserted into the thickness of the element to produce the internal force. Then, the Jacobian of internal forces is deduced by deriving the consistent elasto-plastic tangent moduli. To accurately track the load-displacement equilibrium path in the buckling analysis of elasto-plastic thin shells, the arc-length method is used. The dynamics of the thin shells is also studied by using the generalized-alpha algorithm. Finally, several static and dynamic examples are presented to verify the accuracy of the proposed formulation.


Author(s):  
Joseph Park ◽  
Andrew Shin ◽  
Somaye Jafari ◽  
Joseph L. Demer

AbstractThe optic nerve (ON) is a recently recognized tractional load on the eye during larger horizontal eye rotations. In order to understand the mechanical behavior of the eye during adduction, it is necessary to characterize material properties of the sclera, ON, and in particular its sheath. We performed tensile loading of specimens taken from fresh postmortem human eyes to characterize the range of variation in their biomechanical properties and determine the effect of preconditioning. We fitted reduced polynomial hyperelastic models to represent the nonlinear tensile behavior of the anterior, equatorial, posterior, and peripapillary sclera, as well as the ON and its sheath. For comparison, we analyzed tangent moduli in low and high strain regions to represent stiffness. Scleral stiffness generally decreased from anterior to posterior ocular regions. The ON had the lowest tangent modulus, but was surrounded by a much stiffer sheath. The low-strain hyperelastic behaviors of adjacent anatomical regions of the ON, ON sheath, and posterior sclera were similar as appropriate to avoid discontinuities at their boundaries. Regional stiffnesses within individual eyes were moderately correlated, implying that mechanical properties in one region of an eye do not reliably reflect properties of another region of that eye, and that potentially pathological combinations could occur in an eye if regional properties are discrepant. Preconditioning modestly stiffened ocular tissues, except peripapillary sclera that softened. The nonlinear mechanical behavior of posterior ocular tissues permits their stresses to match closely at low strains, although progressively increasing strain causes particularly great stress in the peripapillary region.


Author(s):  
Erik Tamsen ◽  
Daniel Balzani

AbstractIn this paper we present a fully-coupled, two-scale homogenization method for dynamic loading in the spirit of FE$$^2$$ 2 methods. The framework considers the balance of linear momentum including inertia at the microscale to capture possible dynamic effects arising from micro heterogeneities. A finite-strain formulation is adapted to account for geometrical nonlinearities enabling the study of e.g. plasticity or fiber pullout, which may be associated with large deformations. A consistent kinematic scale link is established as displacement constraint on the whole representative volume element. The consistent macroscopic material tangent moduli are derived including micro inertia in closed form. These can easily be calculated with a loop over all microscopic finite elements, only applying existing assembly and solving procedures. Thus, making it suitable for standard finite element program architectures. Numerical examples of a layered periodic material are presented and compared to direct numerical simulations to demonstrate the capability of the proposed framework. In addition, a simulation of a split Hopkinson tension test showcases the applicability of the framework to engineering problems.


Author(s):  
Nicolas Jacquet ◽  
Nicolas Tardif ◽  
Thomas Elguedj ◽  
Christophe Garnier

Abstract This work is focused on elasto-visco-plastic (EVP) buckling of thick shell structures. In particular we are interested in predicting accurately the buckling risk of stainless steel components of nuclear fast sodium reactor working under high pressure and at high temperature (around 180 bar and 500 °C). We follow a modeling/experimental approach to solve this problem. The set-up of relevant experiments at such high temperature being complex, we work with a representative material that shows similar EVP and buckling behavior at room temperature. The representative material is an alloy mostly composed of tin, silver and copper, commonly named Sn 3.0 Ag 0.5 Cu. The elasto-visco-plastic constitutive model of the material was first characterized using tensile tests on notched specimen at room temperature under various strain rates, and the model parameters identified using finite element model updating (FEMU). In a second step we performed in plane compressive buckling tests of thick plates for various displacement rates. Surface 3D displacements were acquired using three cameras and digital image correlation. It is well known for thick plates that linearized tangent moduli derived from Levy-Mises flow theory does not give accurate elasto-plastic buckling prediction. Linearized tangent moduli derived from Hencky’s deformation theory gives more accurate buckling prediction for thick plates. This numerical phenomenon known as buckling paradox was well correlated to experiments in the literature. This paradox is applied here to thick plates, with EVP constitutive model, in order to predict buckling. Finally, finite element (FE) modeling of the buckling experiments was performed. Plates are modeled using SHB8PS solid shell elements. Solid shell elements allow direct displacement correlation with experiments and accurate through the thickness behavior with a 3D material model. The numerical modeling includes real plate geometry obtained using post machining measurements, experimental boundary conditions derived from the DIC (Digital Image Correlation) results and the previously identified constitutive material law. Buckling risk is tested at each loading step of the incremental algorithm using the tangent operator derived with the Hencky’s deformation theory. Numerical results show a very good correlation with the experimental results on load and displacement history as well as buckling critical load and buckling mode.


2019 ◽  
Vol 6 (2) ◽  
pp. 43 ◽  
Author(s):  
Harold J. Brandon ◽  
Larry S. Nichter ◽  
Dwight D. Back

The IDEAL IMPLANT® Structured Breast Implant is a dual lumen saline-filled implant with capsular contracture and deflation/rupture rates much lower than single-lumen silicone gel-filled implants. To better understand the implant’s mechanical properties and to provide a potential explanation for these eight-year clinical results, a novel approach to compressive load testing was employed. Multi-dimensional strains and tangent moduli, metrics describing the shape stability of the total implant, were derived from the experimental load and platen spacing data. The IDEAL IMPLANT was found to have projection, diametric, and areal strains that were generally less than silicone gel implants, and tangent moduli that were generally greater than silicone gel implants. Despite having a relatively inviscid saline fill, the IDEAL IMPLANT was found to be more shape stable compared to gel implants, which implies potentially less interaction with the capsule wall when the implant is subjected to compressive loads. Under compressive loads, the shape stability of a higher cross-link density, cohesive gel implant was unexpectedly found to be similar to or the same as a gel implant. In localized diametric compression testing, the IDEAL IMPLANT was found to have a palpability similar to a gel implant, but softer than a cohesive gel implant.


2018 ◽  
Vol 27 (1) ◽  
pp. 20-32
Author(s):  
Shamsun Alam ◽  
Md Forhad Mina ◽  
Mohammad Jellur Rahman ◽  
Md Abdul Gafur ◽  
Kazi Hanium Maria ◽  
...  

Biocomposites of poly(lactic acid) (PLA) and micrometre-sized graphite (GP) flake powder with 0–30 wt% GP contents have been prepared using extrusion moulding followed by compression moulding. The pure PLA and PLA-GP composites (PGC) have been examined by Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy (RS), X-ray diffraction (XRD) technique, scanning electron microscopy (SEM), transmission electron microscopy (TEM), mechanical and micromechanical testing, differential thermal analysis (DTA) and thermogravimetric analysis (TGA). FTIR spectra confirm the physical bond formation between GP and PLA. RS distinguishes the D-band spectra of pure PLA and PGC. XRD shows a partially crystalline structure in the PLA. SEM and TEM exhibit a clear dispersion of GP particles in PLA matrix at lower loading and aggregates at higher loading. With an increase of filler content, the tensile and flexural strengths decrease, but the Young’s and tangent moduli are observed to increase by 58% and 77%, respectively. These increments represent an increase in the stiffness of the materials and are found to be consistent with the theoretical values. A decrease in microhardness with increase in filler content is also observed. Both the DTA and TGA reveal an increased thermal stability of the composites.


2018 ◽  
pp. 49-66
Author(s):  
Robert M. Hackett
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document