tendon healing
Recently Published Documents


TOTAL DOCUMENTS

817
(FIVE YEARS 229)

H-INDEX

65
(FIVE YEARS 11)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Yonghui Hou ◽  
Bingyu Zhou ◽  
Ming Ni ◽  
Min Wang ◽  
Lingli Ding ◽  
...  

Abstract Background Tendon is a major component of musculoskeletal system connecting the muscles to the bone. Tendon injuries are very common orthopedics problems leading to impeded motion. Up to now, there still lacks effective treatments for tendon diseases. Methods Tendon stem/progenitor cells (TSPCs) were isolated from the patellar tendons of SD rats. The expression levels of genes were evaluated by quantitative RT-PCR. Immunohistochemistry staining was performed to confirm the presence of tendon markers in tendon tissues. Bioinformatics analysis of data acquired by RNA-seq was used to find out the differentially expressed genes. Rat patellar tendon injury model was used to evaluate the effect of U0126 on tendon injury healing. Biomechanical testing was applied to evaluate the mechanical properties of newly formed tendon tissues. Results In this study, we have shown that ERK inhibitor U0126 rather PD98059 could effectively increase the expression of tendon-related genes and promote the tenogenesis of TSPCs in vitro. To explore the underlying mechanisms, RNA sequencing was performed to identify the molecular difference between U0126-treated and control TSPCs. The result showed that GDF6 was significantly increased by U0126, which is an important factor of the TGFβ superfamily regulating tendon development and tenogenesis. In addition, NBM (nonwoven-based gelatin/polycaprolactone membrane) which mimics the native microenvironment of the tendon tissue was used as an acellular scaffold to carry U0126. The results demonstrated that when NBM was used in combination with U0126, tendon healing was significantly promoted with better histological staining outcomes and mechanical properties. Conclusion Taken together, we have found U0126 promoted tenogenesis in TSPCs through activating GDF6, and NBM loaded with U0126 significantly promoted tendon defect healing, which provides a new treatment for tendon injury.


Author(s):  
Benjamin R. Freedman ◽  
Andreas Kuttler ◽  
Nicolau Beckmann ◽  
Sungmin Nam ◽  
Daniel Kent ◽  
...  

Author(s):  
Nourhan Elsayed Hebeshi ◽  
Nagat Mohamad El-Gazzar ◽  
Amal Mohamad El-Barbary ◽  
Marwa Ahmed Abo El-Hawa

Objectives: To evaluate the role of early rehabilitation of surgically repaired flexor hand tendons in improvement of clinical outcome and the role of musculoskeletal ultrasound in follow up of their healing. Patients and methods: Thirty patients with 31 repaired flexor tendons. Assessment was done after 2nd, 4th,8th and 12th weeks of rehabilitation by visual analogue scale (VAS), total active motion of injured fingers (TAM), grip strength, hand assessment tool (HAT) score and ultrasound (US). Results: There was a significant development in pain assessed by VAS, TAM, grip strength and HAT score of the affected hand (p<0.001). Ultrasonographic assessment of healing flexor tendons showed significant improvement in defect size, thickness, vascularity, echogenicity and margination. There was positive correlation between margination of healing flexor tendon with VAS, hand grip and HAT score. Conclusions: Application of proper rehabilitation programs has a great impact on improving the functional outcome after surgical repair of flexor hand tendons. High-frequency ultrasound is used to follow up tendon healing after surgical repair and to assess the state of tendon repair in relation to clinical result.


2021 ◽  
Vol 22 (23) ◽  
pp. 13089
Author(s):  
Xin Zhou ◽  
Junhong Li ◽  
Antonios Giannopoulos ◽  
Paul J. Kingham ◽  
Ludvig J. Backman

It is known that mechanical loading of muscles increases the strength of healing tendon tissue, but the mechanism involved remains elusive. We hypothesized that the secretome from myoblasts in co-culture with tenocytes affects tenocyte migration, cell phenotype, and collagen (Col) production and that the effect is dependent on different types of mechanical loading of myoblasts. To test this, we used an in vitro indirect transwell co-culture system. Myoblasts were mechanically loaded using the FlexCell® Tension system. Tenocyte cell migration, proliferation, apoptosis, collagen production, and several tenocyte markers were measured. The secretome from myoblasts decreased the Col I/III ratio and increased the expression of tenocyte specific markers as compared with tenocytes cultured alone. The secretome from statically loaded myoblasts significantly enhanced tenocyte migration and Col I/III ratio as compared with dynamic loading and controls. In addition, the secretome from statically loaded myoblasts induced tenocytes towards a myofibroblast-like phenotype. Taken together, these results demonstrate that the secretome from statically loaded myoblasts has a profound influence on tenocytes, affecting parameters that are related to the tendon healing process.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Emanuele Chisari ◽  
Laura Rehak ◽  
Wasim S. Khan ◽  
Nicola Maffulli

Abstract Background Tendinopathy is common, presents with pain and activity limitation, and is associated with a high risk of recurrence of the injury. Tendinopathy usually occurs as a results of a disrupted healing response to a primary injury where cellular and molecular pathways lead to low grade chronic inflammation. Main findings There has been a renewed interest in investigating the role of Inflammation in the pathogenesis of tendinopathy, in particular during the initial phases of the condition where it may not be clinically evident. Understanding the early and late stages of tendon injury pathogenesis would help develop new and effective treatments addressed at targeting the inflammatory pathways. Conclusion This review outlines the role of low-grade Inflammation in the pathogenesis of tendinopathy, stressing the role of proinflammatory cytokines, proteolytic enzymes and growth factors, and explores how Inflammation exerts a negative influence on the process of tendon healing.


2021 ◽  
Vol 32 (3) ◽  
pp. 676-687
Author(s):  
Kutsi Tuncer ◽  
Mehmet Demir ◽  
Eyüp Şenocak ◽  
Ali Sefa Mendil ◽  
Arzu Gezer ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Fan Lai ◽  
Hong Tang ◽  
Jingjing Wang ◽  
Kang Lu ◽  
Xuting Bian ◽  
...  

Abstract Introduction Tendon diseases and injuries are a serious problem for the aged population, often leading to pain, disability and a significant decline in quality of life. The purpose of this study was to determine the influence of aging on biochemistry and histology during tendon healing and to provide a new strategy for improving tendon healing. Method A total of 24 Sprague-Dawley rats were equally divided into a young and an aged group. A rat patellar tendon defect model was used in this study. Tendon samples were collected at weeks 2 and 4, and hematoxylin-eosin, alcian blue and immunofluorescence staining were performed for histological analysis. Meanwhile, reverse transcription-polymerase chain reaction (RT-PCR) and western blot were performed to evaluate the biochemical changes. Results The histological scores in aged rats were significantly lower than those in young rats. At the protein level, collagen synthesis-related markers Col-3, Matrix metalloproteinase-1 and Metallopeptidase Inhibitor 1(TIMP-1) were decreased at week 4 in aged rats compared with those of young rats. Though there was a decrease in the expression of the chondrogenic marker aggrecan at the protein level in aged tendon, the Micro-CT results from weeks 4 samples showed no significant difference(p>0.05) on the ectopic ossification between groups. Moreover, we found more adipocytes accumulated in the aged tendon defect with the Oil Red O staining and at the gene and protein levels the markers related to adipogenic differentiation. Conclusions Our findings indicate that tendon healing is impaired in aged rats and is characterized by a significantly lower histological score, decreased collagen synthesis and more adipocyte accumulation in patellar tendon after repair.


2021 ◽  
Author(s):  
Antonion Korcari ◽  
Alayna E Loiselle ◽  
Mark R Buckley

Tendon injuries are very common and result in significant impairments in mobility and quality of life. During healing, tendons produce a scar at the injury site, characterized by abundant and disorganized extracellular matrix and by permanent deficits in mechanical integrity compared to healthy tendon. Although a significant amount of work has been done to understand the healing process of tendons and to develop potential therapeutics for tendon regeneration, there is still a significant gap in terms of assessing the direct effects of therapeutics on the functional and material quality specifically of the scar tissue, and thus, on the overall tendon healing process. In this study, we focused on characterizing the mechanical properties of only the scar tissue in flexor digitorum longus (FDL) tendons during the proliferative and remodeling healing phases and comparing these properties with the mechanical properties of the composite healing tissue. Our method was sensitive enough to identify significant differences in structural and material properties between the scar and tendon-scar composite tissues. To account for possible inaccuracies due to the small aspect ratio of scar tissue, we also applied inverse finite element analysis (iFEA) to compute mechanical properties based on simulated tests with accurate specimen geometries and boundary conditions. We found that the scar tissue linear tangent moduli calculated from iFEA were not significantly different from those calculated experimentally at all healing timepoints, validating our experimental findings, and suggesting the assumptions in our experimental calculations were accurate. Taken together, this study first demonstrates that due to the presence of uninjured stubs, testing composite healing tendons without isolating the scar tissue overestimates the material properties of the scar itself. Second, our scar isolation method promises to enable more direct assessment of how different treatment regimens (e.g., cellular ablation, biomechanical and/or biochemical stimuli, tissue engineered scaffolds) affect scar tissue function and material quality in multiple different types of tendons.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3081
Author(s):  
Francesco Oliva ◽  
Emanuela Marsilio ◽  
Giovanni Asparago ◽  
Antonio Frizziero ◽  
Anna Concetta Berardi ◽  
...  

The physical–chemical, structural, hydrodynamic, and biological properties of hyaluronic acid within tendons are still poorly investigated. Medical history and clinical applications of hyaluronic acid for tendinopathies are still debated. In general, the properties of hyaluronic acid depend on several factors including molecular weight. Several preclinical and clinical experiences show a good efficacy and safety profile of hyaluronic acid, despite the absence of consensus in the literature regarding the classification according to molecular weight. In in vitro and preclinical studies, hyaluronic acid has shown physical–chemical properties, such as biocompatibility, mucoadhesivity, hygroscopicity, and viscoelasticity, useful to contribute to tendon healing. Additionally, in clinical studies, hyaluronic acid has been used with promising results in different tendinopathies. In this narrative review, findings encourage the clinical application of HA in tendinopathies such as rotator cuff, epicondylitis, Achilles, and patellar tendinopathy.


Sign in / Sign up

Export Citation Format

Share Document