genomic arrangement
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 16)

H-INDEX

15
(FIVE YEARS 1)

PLoS Genetics ◽  
2022 ◽  
Vol 18 (1) ◽  
pp. e1010000
Author(s):  
Hajime Okada ◽  
Yumiko Saga

Organisms are inherently equipped with buffering systems against genetic perturbations. Genetic compensation, the compensatory response by upregulating another gene or genes, is one such buffering mechanism. Recently, a well-conserved compensatory mechanism was proposed: transcriptional adaptation of homologs under the nonsense-mediated mRNA decay pathways. However, this model cannot explain the onset of all compensatory events. We report a novel genetic compensation mechanism operating over the Mesp gene locus. Mesp1 and Mesp2 are paralogs located adjacently in the genome. Mesp2 loss is partially rescued by Mesp1 upregulation in the presomitic mesoderm (PSM). Using a cultured PSM induction system, we reproduced the compensatory response in vitro and found that the Mesp2-enhancer is required to promote Mesp1. We revealed that the Mesp2-enhancer directly interacts with the Mesp1 promoter, thereby upregulating Mesp1 expression upon the loss of Mesp2. Of note, this interaction is established by genomic arrangement upon PSM development independently of Mesp2 disruption. We propose that the repurposing of this established enhancer-promoter communication is the mechanism underlying this compensatory response for the upregulation of the adjacent gene.


2021 ◽  
Author(s):  
Qian Zhou ◽  
Yun Chen ◽  
Mingyuan Li ◽  
Weijun Zeng ◽  
Jilian Wang ◽  
...  

Abstract Background Herb genomics is a rapidly developing field of medicinal plant research and development. Plant genomic studies demonstrate the unique advantage of employing plants in medicinal therapy. The genus Lepidium falls under the Brassicaceae family and it includes crucial medicinal plants. Herein, we sequenced the complete chloroplast (cp) genomes of Lepidium apetalum (LA) and Lepidium perfoliatum (LP) and assessed their genetic profiles against the reported profiles of Lepidium sativum (LS), Lepidium meyenii (LM), and Lepidium virginicum (LV). Results In particular, we examined genomic arrangement, gene number, type, and repeat sequences. Based on our annotation data, both LA and LP possessed 130 distinct genes that included 85 protein-coding, 37 transfer RNA (tRNA), and 8 ribosomal RNA (rRNA) genes. Our repeat analyses revealed that LA harbored 20 forward repeats, 16 palindrome repeats, 30 tandem repeats, and 87 simple sequence repeats, whereas LP had 15 forward repeats, 20 palindrome repeats,4 reverse repeats, 21 tandem repeats, and 98 simple sequence repeats. Using syntenic analysis, we also revealed a high degree of sequence similarity within the coding regions of Lepidium cp genomes and a remarkably high degree of divergence among the intergenic spacers. Pairwise alignment and single-nucleotide polymorphism (SNP) examinations further revealed certain Lepidium-specific gene fragments, particularly in the intergenic regions of the trnK-atpA, trnC-psbC, trnT-rbcL, ndhF-ndhH, ycf1-trnR, accD, ccsA, matK, ndhF, rpoB, rpoC2, and ycf1 genes. Moreover, following codon usage analysis, we observed that codon 14 was the most frequently used codon in the Lepidium CDS. In addition, correlation investigations revealed that the ENC (the effective number of codon) content was strongly associated with GC3, GC3s, and N. Conclusion Based on these data, LA and LP originate from very similar genetic backgrounds. Furthermore, neutrality, ENC, and PR2-plots analyses demonstrated that the CUB (the codon usage bias) of Lepidium cp genome was strongly influenced by mutation and natural selection. Our analysis of the cp genomic sequences of LA and LP will likely enhance breeding, species recognition, phylogenetic evolution, and cp genetic engineering of the Lepidium medicinal plants.


2021 ◽  
Author(s):  
Hajime Okada ◽  
Yumiko Saga

Organisms are inherently equipped with buffering systems against genetic perturbations. Upregulation of homologous genes responding to gene loss, termed genetic compensation, is one such buffering mechanism. Recently, a well-conserved compensatory mechanism was proposed: transcriptional adaptation of homologs under the nonsense-mediated mRNA decay pathways. However, this model cannot explain the onset of all compensatory events. We report a novel genetic compensation mechanism operating over the Mesp gene locus. Mesp1 and Mesp2 are homologs located adjacently in the genome. Mesp2 loss is partially rescued by Mesp1 upregulation in the presomitic mesoderm (PSM). Using a cultured PSM induction system, we reproduced the compensatory response in vitro and found that the Mesp2-enhancer is required to promote Mesp1. We revealed that the Mesp2-enhancer directly interacts with the Mesp1 promoter, thereby upregulating Mesp1 expression upon the loss of Mesp2. Of note, this interaction is established by genomic arrangement upon PSM development independently of Mesp2 disruption. We propose that the repurposing of this established enhancer-promoter communication is the mechanism underlying this compensatory response for the upregulation of the adjacent homolog.


2021 ◽  
Vol 22 (8) ◽  
pp. 4004
Author(s):  
Yongming Chen ◽  
Guitao Zhong ◽  
Huiren Cai ◽  
Renjie Chen ◽  
Na Liu ◽  
...  

The encoding genes of plant intracellular nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domain receptors (NLRs) often exist in the form of a gene cluster. Several recent studies demonstrated that the truncated Toll/interleukin-1 receptor-NBS (TIR-NBS) proteins play important roles in immunity. In this study, we identified a large TN gene cluster on Arabidopsis ecotype Col-0 chromosome 1, which included nine TN genes, TN4 to TN12. Interestingly, this cluster also contained two typical TIR-NBS-LRR genes: At1g72840 and At1g72860 (hereinafter referred to as TNL40 and TNL60, respectively), which formed head-to-head genomic arrangement with TN4 to TN12. However, the functions of these TN and TNL genes in this cluster are still unknown. Here, we showed that the TIR domains of both TNL40 and TNL60 associated with TN10 specifically. Furthermore, both TNL40TIR and TNL60TIR induced cell death in Nicotiana tabacum leaves. Subcellular localization showed that TNL40 mainly localized in the cytoplasm, whereas TNL60 and TN10 localized in both the cytoplasm and nucleus. Additionally, the expression of TNL40, TNL60, and TN10 were co-regulated after inoculated with bacterial pathogens. Taken together, our study indicates that the truncated TIR-NBS protein TN10 associates with two clustered TNL immune receptors, and may work together in plant disease resistance


2021 ◽  
Author(s):  
Ginga Shimakawa ◽  
Eiichi Shoguchi ◽  
Adrien Burlacot ◽  
Kentaro Ifuku ◽  
Yufen Che ◽  
...  

Photosynthesis in cyanobacteria, green algae, and basal land plants is protected against excess reducing pressure on the photosynthetic chain by flavodiiron proteins (FLV) that dissipate photosynthetic electrons by reducing O2. In these organisms, the genes encoding FLV are always conserved in the form of a pair of two-type isozymes (FLVA and FLVB) that are believed to function in O2 photo-reduction as a heterodimer. While coral symbionts (dinoflagellates of the family Symbiodiniaceae) are the only algae to harbor FLV in photosynthetic red plastid lineage, only one gene is found in transcriptomes and its role and activity remain unknown. Here, we characterized the FLV genes in Symbiodiniaceae and found that its coding region is composed of tandemly repeated FLV sequences. By measuring the O2-dependent electron flow and P700 oxidation, we suggest that this atypical FLV is active in vivo. Based on the amino-acid sequence alignment and the phylogenetic analysis, we conclude that in coral symbionts, the gene pair for FLVA and FLVB have been fused to construct one coding region for a hybrid enzyme, which presumably occurred when or after both genes were inherited from basal green algae to the dinoflagellate. Immunodetection suggested the FLV polypeptide to be cleaved by a post-translational mechanism, adding it to the rare cases of polycistronic genes in eukaryotes. Our results demonstrate that FLV are active in coral symbionts with genomic arrangement that is unique to these species. The implication of these unique features on their symbiotic living environment is discussed.


2021 ◽  
Vol 9 (2) ◽  
pp. 276
Author(s):  
Sarah Asfare ◽  
Reem Eldabagh ◽  
Khizar Siddiqui ◽  
Bharvi Patel ◽  
Diellza Kaba ◽  
...  

The proper balance of gene expression is essential for cellular health, organismal development, and maintaining homeostasis. In response to complex internal and external signals, the cell needs to modulate gene expression to maintain proteostasis and establish cellular identity within its niche. On a genome level, single-celled prokaryotic microbes display clustering of co-expressed genes that are regulated as a polycistronic RNA. This phenomenon is largely absent from eukaryotic microbes, although there is extensive clustering of co-expressed genes as functional pairs spread throughout the genome in Saccharomyces cerevisiae. While initial analysis demonstrated conservation of clustering in divergent fungal lineages, a comprehensive analysis has yet to be performed. Here we report on the prevalence, conservation, and significance of the functional clustering of co-regulated genes within the opportunistic human pathogen, Candida albicans. Our analysis reveals that there is extensive clustering within this organism—although the identity of the gene pairs is unique compared with those found in S. cerevisiae—indicating that this genomic arrangement evolved after these microbes diverged evolutionarily, rather than being the result of an ancestral arrangement. We report a clustered arrangement in gene families that participate in diverse molecular functions and are not the result of a divergent orientation with a shared promoter. This arrangement coordinates the transcription of the clustered genes to their neighboring genes, with the clusters congregating to genomic loci that are conducive to transcriptional regulation at a distance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Can Yuan ◽  
Xiufen Sha ◽  
Miao Xiong ◽  
Wenjuan Zhong ◽  
Yu Wei ◽  
...  

AbstractLigusticum L., one of the largest members in Apiaceae, encompasses medicinally important plants, the taxonomic statuses of which have been proved to be difficult to resolve. In the current study, the complete chloroplast genomes of seven crucial plants of the best-known herbs in Ligusticum were presented. The seven genomes ranged from 148,275 to 148,564 bp in length with a highly conserved gene content, gene order and genomic arrangement. A shared dramatic decrease in genome size resulted from a lineage-specific inverted repeat (IR) contraction, which could potentially be a promising diagnostic character for taxonomic investigation of Ligusticum, was discovered, without affecting the synonymous rate. Although a higher variability was uncovered in hotspot divergence regions that were unevenly distributed across the chloroplast genome, a concatenated strategy for rapid species identification was proposed because separate fragments inadequately provided variation for fine resolution. Phylogenetic inference using plastid genome-scale data produced a concordant topology receiving a robust support value, which revealed that L. chuanxiong had a closer relationship with L. jeholense than L. sinense, and L. sinense cv. Fuxiong had a closer relationship to L. sinense than L. chuanxiong, for the first time. Our results not only furnish concrete evidence for clarifying Ligusticum taxonomy but also provide a solid foundation for further pharmaphylogenetic investigation.


2020 ◽  
Author(s):  
Zachary D. Root ◽  
David Jandzik ◽  
Cara Allen ◽  
Margaux Brewer ◽  
Marek Romášek ◽  
...  

ABSTRACTThe evolution of vertebrates from an invertebrate chordate ancestor involved the evolution of new organs, tissues, and cell types. It was also marked by the origin and duplication of new gene families. If, and how, these morphological and genetic innovations are related is an unresolved question in vertebrate evolution. Hyaluronan is an extracellular matrix (ECM) polysaccharide important for water homeostasis and tissue structure. Vertebrates possess a novel family of hyaluronan binding proteins called Lecticans, and studies in jawed vertebrates (gnathostomes) have shown they function in many of the cells and tissues that are unique to vertebrates. This raises the possibility that the origin and/or expansion of this gene family helped drive the evolution of these vertebrate novelties. In order to better understand the evolution of the lectican gene family, and its role in the evolution of vertebrate morphological novelties, we investigated the phylogeny, genomic arrangement, and expression patterns of all lecticans in the sea lamprey (Petromyzon marinus), a jawless vertebrate. Though both P. marinus and gnathostomes have four lecticans, our phylogenetic and syntenic analyses suggest lamprey lecticans are the result of one or more cyclostome-specific duplications. Despite the independent expansion of the lamprey and gnathostome lectican families, we find highly conserved expression of lecticans in vertebrate-specific and mesenchyme-derived tissues. We also find that, unlike gnathostomes, lamprey expresses its lectican paralogs in distinct subpopulations of head skeleton precursors, potentially reflecting an ancestral diversity of skeletal tissue types. Together, these observations suggest that the ancestral pre-duplication lectican had a complex expression pattern, functioned to support mesenchymal histology, and likely played a role in the evolution of vertebrate-specific cell and tissue types.


Viruses ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 995
Author(s):  
Zhenzhi Han ◽  
Jinbo Xiao ◽  
Yang Song ◽  
Mei Hong ◽  
Guolong Dai ◽  
...  

Novel posa-like viral genomes were first identified in swine fecal samples using metagenomics and were designated as unclassified viruses in the order Picornavirales. In the present study, nine husavirus strains were identified in China. Their genomes share 94.1–99.9% similarity, and alignment of these nine husavirus strains identified 697 nucleotide polymorphism sites across their full-length genomes. These nine strains were directly clustered with the Husavirus 1 lineage, and their genomic arrangement showed similar characteristics. These posa-like viruses have undergone a complex evolutionary process, and have a wide geographic distribution, complex host spectrum, deep phylogenetic divergence, and diverse genomic organizations. The clade of posa-like viruses forms a single group, which is evolutionarily distinct from other known families and could represent a distinct family within the Picornavirales. The genomic arrangement of Picornavirales and the new posa-like viruses are different, whereas the posa-like viruses have genomic modules similar to the families Dicistroviridae and Marnaviridae. The present study provides valuable genetic evidence of husaviruses in China, and clarifies the phylogenetic dynamics and the evolutionary characteristics of Picornavirales.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Brevin A. Smider ◽  
Vaughn V. Smider

Abstract Background Cow antibodies are very unusual in having exceptionally long CDR H3 regions. The genetic basis for this length largely derives from long heavy chain diversity (DH) regions, with a single “ultralong” DH, IGHD8–2, encoding over 50 amino acids. Many bovine IGHD regions have sequence similarity but have several nucleotide repeating units that diversify their lengths. Genomically, most DH regions exist in three clusters that appear to have formed from DNA duplication events. However, the relationship between the genomic arrangement and long CDR lengths is unclear. Results The DH cluster containing IGHD8–2 underwent a rearrangement and deletion event in relation to the other clusters in the region corresponding to IGHD8–2, with possible fusion of two DH regions and expansion of short repeats to form the ultralong IGHD8–2 gene. Conclusions Length heterogeneity within DH regions is a unique evolutionary genomic mechanism to create immune diversity, including formation of ultralong CDR H3 regions.


Sign in / Sign up

Export Citation Format

Share Document