During the course of evolution, numerous taxa abandoned canonical sex and reproduced asexually. Examination of the Cobitis hankugensis × Iksookimia longicorpa asexual complex already revealed important evolutionary discoveries tackling phenomena like interspecific hybridization, non-Mendelian inheritance, polyploidy, and asexuality. Yet, as in other similar cases, the investigation is hampered by the lack of easily accessible molecular tools for efficient differentiation among genomotypes. Here, we tested the cross-species amplification of 23 microsatellite markers derived from distantly related species and investigated the extent to which such markers can facilitate the genome identification in the non-model hybrid complex. We found that 21 out of 23 microsatellite markers were amplified in all genomotypes. Five of them could be used for easy diagnostics of parental species and their hybrids due to species-specific amplification profiles. We also noted that three markers, i.e., IC654 and IC783 derived from Cobitis choii Kim et Son, 1984 and Iko_TTA01 from Iksookimia koreensis (Kim, 1975), had dosage-sensitive amplification efficiencies of species-specific alleles. This could be further used for reliable differentiation of genome composition in polyploids. The presently reported study introduces a noninvasive method applicable for the diagnosis of ploidy and genome composition of hybrids, which are not clearly distinguished morphologically. We showed that very detailed information may be obtained even from markers developed in distantly related taxa. Hybridization is being increasingly recognized as a driving force in evolution. Yet, proper detection of hybrids and their ploidy is particularly challenging, especially in non-model organisms. The present paper evaluates the power of microsatellite cross-amplification not only in the identification of hybrid forms but also in estimating their genome dosage on an example of a fish taxon that involves asexuality, hybridization as well as ploidy variation. It thus demonstrates the wide applicability of such cheap and non-invasive tools.