current feedback amplifier
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 5)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
Anisur Rehman Nasir ◽  
S. N. Ahmad

A novel current-mode multifunction inverse filter configuration using single current feedback amplifier (CFA) is presented. The proposed filter employs only one CFA and few passive components. The proposed circuit realizes inverse lowpass, inverse bandpass and inverse highpass filter functions with proper admittances. The characteristics of proposed multifunction inverse filter configuration are- current-mode realization; use of only one CFA; use of grounded passive components except one virtually grounded and realizing all three basic inverse filters. The proposed current-mode inverse filter circuit has been tested by TINA PRO simulation program and results justified the theoretical analysis.


Author(s):  
Fethi Gür ◽  
Fuat Anday

A new voltage mode Proportional-Integral-Derivative (PID) controller employing Current Differencing Buffered Amplifier (CDBA) is presented. The proposed PID controller employs a canonical number of capacitors without requiring any passive components matching conditions. The element values are expressed in terms of PID parameters. Workability of the proposed controller is demonstrated through SPICE simulations for which CDBA is realized using Current Feedback Amplifier (CFA). The simulation results are found in close agreement with the theoretical results.


2021 ◽  
Vol 9 (1) ◽  
pp. 18-21
Author(s):  
Dr. Nisha Walde ◽  
Mr. Prashant Kumar Mavi

One configuration for realizing voltage- mode multifunction filters using current feedback amplifiers (CFOA) is presented. The proposed voltage -mode circuit exhibit simultaneously low pass and band pass filters. The proposed circuits offer the following features: No requirements for component matching conditions; low active and passive sensitivities; employing only grounded capacitors and the ability to obtain multifunction filters from the same circuit configuration.


2019 ◽  
Vol 28 (06) ◽  
pp. 1950093 ◽  
Author(s):  
Amrita Singh ◽  
Manoj Kumar Jain ◽  
Subodh Wairya

Simulation of inductors has been a very popular area of analog circuit research and the alternative choice for realizing inductor-based circuits in integrated circuits. In this paper, lossless, grounded and floating inductor topologies using current-controlled-current-feedback amplifier (CC-CFA) with single grounded capacitor are presented. The proposed topologies can be tuned electronically by changing the biasing current of the CC-CFA. Two topologies for grounded inductor simulator employ two CC-CFA and one grounded capacitor. One topology for floating inductor simulator employs three CC-CFA and one grounded capacitor. The performance of the grounded and floating inductor simulators are demonstrated on resonant circuits. The theoretical analysis is verified by PSPICE simulation results.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaomin Zheng ◽  
Yuejun Zhang ◽  
Jiaweng Zhang ◽  
Wenqi Hu

We propose a new design, Physical Unclonable Function (PUF) scheme, for the Internet of Things (IoT), which has been suffering from multiple-level security threats. As more and more objects interconnect on IoT networks, the identity of each thing is very important. To authenticate each object, we design an impedance mismatch PUF, which exploits random physical factors of the transmission line to generate a security unique private key. The characteristic impedance of the transmission line and signal transmission theory of the printed circuit board (PCB) are also analyzed in detail. To improve the reliability, current feedback amplifier (CFA) method is applied on the PUF. Finally, the proposed scheme is implemented and tested. The measure results show that impedance mismatch PUF provides better unpredictability and randomness.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Koushick Mathur ◽  
Palaniandavar Venkateswaran ◽  
Rabindranath Nandi

A linear voltage controlled quadrature oscillator implemented from a first-order electronically tunable all-pass filter (ETAF) is presented. The active element is commercially available current feedback amplifier (AD844) in conjunction with the relatively new Multiplication Mode Current Conveyor (MMCC) device. Electronic tunability is obtained by the control node voltage (V) of the MMCC. Effects of the device nonidealities, namely, the parasitic capacitors and the roll-off poles of the port-transfer ratios of the device, are shown to be negligible, even though the usable high-frequency ranges are constrained by these imperfections. Subsequently the filter is looped with an electronically tunable integrator (ETI) to implement the quadrature oscillator (QO). Experimental responses on the voltage tunable phase of the filter and the linear-tuning law of the quadrature oscillator up to 9.9 MHz at low THD are verified by simulation and hardware tests.


Sign in / Sign up

Export Citation Format

Share Document