passive advection
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 6)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Alessandro Comolli ◽  
Anne De Wit ◽  
Fabian Brau

<p>The interplay between chemical and transport processes can give rise to complex reaction fronts dynamics, whose understanding is crucial in a wide variety of environmental, hydrological and biological processes, among others. An important class of reactions is A+B->C processes, where A and B are two initially segregated miscible reactants that produce C upon contact. Depending on the nature of the reactants and on the transport processes that they undergo, this class of reaction describes a broad set of phenomena, including combustion, atmospheric reactions, calcium carbonate precipitation and more. Due to the complexity of the coupled chemical-hydrodynamic systems, theoretical studies generally deal with the particular case of reactants undergoing passive advection and molecular diffusion. A restricted number of different geometries have been studied, including uniform rectilinear [1], 2D radial [2] and 3D spherical [3] fronts. By symmetry considerations, these systems are effectively 1D.</p><p>Here, we consider a 3D axis-symmetric confined system in which a reactant A is injected radially into a sea of B and both species are transported by diffusion and passive non-uniform advection. The advective field <em>v<sub>r</sub>(r,z)</em> describes a radial Poiseuille flow. We find that the front dynamics is defined by three distinct temporal regimes, which we characterize analytically and numerically. These are i) an early-time regime where the amount of mixing is small and the dynamics is transport-dominated, ii) a strongly non-linear transient regime and iii) a long-time regime that exhibits Taylor-like dispersion, for which the system dynamics is similar to the 2D radial case.</p><p>                                  <img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.ff5ab530bdff57321640161/sdaolpUECMynit/12UGE&app=m&a=0&c=360a1556c809484116c55812c8c06624&ct=x&pn=gnp.elif&d=1" alt="" width="299" height="299">                                                     <img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.671a6980bdff51231640161/sdaolpUECMynit/12UGE&app=m&a=0&c=c5a857c3fab835057e3af84001a91d15&ct=x&pn=gnp.elif&d=1" alt="" width="302" height="302"></p><p>                                                   Fig. 1: Concentration profile of the product C in the transient (left) and asymptotic (right) regimes.</p><p> </p><p>References:</p><p>[1] L. Gálfi, Z. Rácz, Phys. Rev. A 38, 3151 (1988);</p><p>[2] F. Brau, G. Schuszter, A. De Wit, Phys. Rev. Lett. 118, 134101 (2017);</p><p>[3] A. Comolli, A. De Wit, F. Brau, Phys. Rev. E, 100 (5), 052213 (2019).</p>


2020 ◽  
Vol 33 (17) ◽  
pp. 7503-7522 ◽  
Author(s):  
Shineng Hu ◽  
Shang-Ping Xie ◽  
Wei Liu

AbstractThis study examines global patterns of net ocean surface heat flux changes (ΔQnet) under greenhouse warming in an ocean–atmosphere coupled model based on a heat budget decomposition. The regional structure of ΔQnet is primarily shaped by ocean heat divergence changes (ΔOHD): excessive heat is absorbed by higher-latitude oceans (mainly over the North Atlantic and the Southern Ocean), transported equatorward, and stored in lower-latitude oceans with the rest being released to the tropical atmosphere. The overall global pattern of ΔOHD is primarily due to the circulation change and partially compensated by the passive advection effect, except for the Southern Ocean, which requires further investigations for a more definitive attribution. The mechanisms of North Atlantic surface heat uptake are further explored. In another set of global warming simulations, a perturbation of freshwater removal is imposed over the subpolar North Atlantic to largely offset the CO2-induced changes in the local ocean vertical stratification, barotropic gyre, and the Atlantic meridional overturning circulation (AMOC). Results from the freshwater perturbation experiments suggest that a significant portion of the positive ΔQnet over the North Atlantic under greenhouse warming is caused by the Atlantic circulation changes, perhaps mainly by the slowdown of AMOC, while the passive advection effect can contribute to the regional variations of ΔQnet. Our results imply that ocean circulation changes are critical for shaping global warming pattern and thus hydrological cycle changes.


2020 ◽  
Vol 22 (5) ◽  
pp. 053052 ◽  
Author(s):  
Alessio Squarcini ◽  
Enzo Marinari ◽  
Gleb Oshanin

2020 ◽  
Author(s):  
Arata Amemiya ◽  
Kaoru Sato

Abstract. The spatial pattern of subseasonal variability of the Asian monsoon anticyclone is analyzed using long-term reanalysis data, focusing on the large-scale longitudinal movement. The air inside the anticyclone is quantified by a thickness-weighted low PV area on an isentropic surface. It is shown that the longitudinal movement of the air inside the Asian monsoon anticyclone has a timescale of one to two weeks, which is shorter than the monthly dominant timescale of the variability in the anticyclone intensity. The movement of the anticyclonic air is suggested to be largely controlled by passive advection. The typical time evolution of the variability pattern, explained by two leading EOF components of 100 hPa geopotential height, shows large-scale geopotential anomalies moving westward spanning from low to middle latitudes. This corresponds well with the rapid westward movement of low-PV air known as eddy shedding and following eastward retreat of the anticyclonic air. The two EOF components can also explain the bimodal longitudinal distribution of geopotential maximum location.


2020 ◽  
Vol 1 (1) ◽  
pp. 175-189 ◽  
Author(s):  
Clemens Spensberger ◽  
Sebastian Schemm

Abstract. Although following a common synoptic evolution for this region, the 1992 New Year's Day Storm was associated with some of the strongest winds observed along the Norwegian west coast. The narrow wind band along its bent-back front became famous as the “poisonous tail” and paved the way towards today's sting jet terminology. This article re-examines the storm's landfall with a particular focus on the interaction with the orography. Sensitivity analyses based on WRF simulations demonstrate that the formation and the evolution of the warm-air seclusion and its poisonous tail are largely independent of orography. In contrast, the warm sector of the storm undergoes considerable orographically induced modifications. While moving over the orography, both warm and cold fronts are eroded rapidly. This development fits neither the cold-air-damming paradigm nor the passive-advection paradigm describing front–orography interactions. The warm sector is lifted over the orography, thereby accelerating the occlusion process. The insensitivity of the warm-air seclusion to the orographic modifications of the warm sector raises the question of to which extent these entities are still interacting after the onset of the occlusion process.


2019 ◽  
Vol 200 (3) ◽  
pp. 1335-1347
Author(s):  
Š. Birnšteinová ◽  
M. Hnatič ◽  
T. Lučivjanský ◽  
L. Mižišin ◽  
V. Škultéty

2013 ◽  
Vol 723 ◽  
pp. 140-162 ◽  
Author(s):  
Markus Holzner ◽  
Baofang Song ◽  
Marc Avila ◽  
Björn Hof

AbstractTransition in shear flows is characterized by localized turbulent regions embedded in the surrounding laminar flow. These so-called turbulent spots or puffs are observed in a variety of shear flows and in certain Reynolds-number regimes, and they are advected by the flow while keeping their characteristic length. We show here for the case of pipe flow that this seemingly passive advection of turbulent puffs involves continuous entrainment and relaminarization of laminar and turbulent fluid across strongly convoluted interfaces. Surprisingly, interface areas are almost two orders of magnitude larger than the pipe cross-section, while local entrainment velocities are much smaller than the mean speed. Even though these velocities were shown to be small and proportional to the Kolmogorov velocity scale (in agreement with a prediction by Corrsin) in a flow without mean shear before, we find that, in pipe flow, local entrainment velocities are about an order of magnitude smaller than this scale. The Lagrangian method used to study the dynamics of the laminar–turbulent interfaces allows accurate determination of the leading and trailing edge speeds. However, to resolve the highly complex interface dynamics requires much higher numerical resolutions than for ordinary turbulent flows. This method also reveals that the volume flux across the leading edge has the same radial dependence but the opposite sign as that across the trailing edge, and it is this symmetry that is responsible for the puff shape remaining constant.


Sign in / Sign up

Export Citation Format

Share Document