nuclear factor y
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 26)

H-INDEX

25
(FIVE YEARS 4)

aBIOTECH ◽  
2021 ◽  
Author(s):  
Pingxian Zhang ◽  
Xiulan Li ◽  
Yifan Wang ◽  
Weijun Guo ◽  
Sadaruddin Chachar ◽  
...  

AbstractThe timing of floral transition is critical for reproductive success in flowering plants. In long-day (LD) plant Arabidopsis, the floral regulator gene FLOWERING LOCUS T (FT) is a major component of the mobile florigen. FT expression is rhythmically activated by CONSTANS (CO), and specifically accumulated at dusk of LDs. However, the underlying mechanism of adequate regulation of FT transcription in response to day-length cues to warrant flowering time still remains to be investigated. Here, we identify a homolog of human protein arginine methyltransferases 6 (HsPRMT6) in Arabidopsis, and confirm AtPRMT6 physically interacts with three positive regulators of flowering Nuclear Factors YC3 (NF-YC3), NF-YC9, and NF-YB3. Further investigations find that AtPRMT6 and its encoding protein accumulate at dusk of LDs. PRMT6-mediated H3R2me2a modification enhances the promotion of NF-YCs on FT transcription in response to inductive LD signals. Moreover, AtPRMT6 and its homologues proteins AtPRMT4a and AtPRMT4b coordinately inhibit the expression of FLOWERING LOCUS C, a suppressor of FT. Taken together, our study reveals the role of arginine methylation in photoperiodic pathway and how the PRMT6-mediating H3R2me2a system interacts with NF-CO module to dynamically control FT expression and facilitate flowering time.


2021 ◽  
Vol 22 (19) ◽  
pp. 10354
Author(s):  
Xinrui Zheng ◽  
Hao Zhang ◽  
Limei Zhang ◽  
Fangsen Xu ◽  
Lei Shi ◽  
...  

Nuclear Factor-Y (NF-Y) transcription factors play vital roles in plant abiotic stress response. Here, the NF-Y family in Brassica napus, which is hyper-sensitive to nitrogen (N) deprivation, was comprehensively identified and systematically characterized. A total of 108 NF-Y family members were identified in B. napus and categorized into three subfamilies (38 NF-YA, 46 NF-YB and 24 NF-YC; part of the Arabidopsis NF-YC homologous genes had been lost during B. napus evolution). In addition, the expansion of the NF-Y family in B. napus was driven by whole-genome duplication and segmental duplication. Differed expression patterns of BnaNF-Ys were observed in response to multiple nutrient starvations. Thirty-four genes were regulated only in one nutrient deficient condition. Moreover, more BnaNF-YA genes were differentially expressed under nutrient limited environments compared to the BnaNF-YB and BnaNF-YC subfamilies. Sixteen hub genes responded diversely to N deprivation in five rapeseed tissues. In summary, our results laid a theoretical foundation for the follow-up functional study of the key NF-Y genes in B. napus in regulating nutrient homeostasis, especially N.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1107
Author(s):  
Jia-Hao Dai ◽  
An-Qi Hu ◽  
Jia-Shuo Zhang ◽  
Wen-Hai Liao ◽  
Hua-Yan Ma ◽  
...  

The transcription factor NF-YB (nuclear factor-YB) family is a subfamily of the nuclear factor Y (NF-Y), which plays an important role in regulating plant growth, development and participates in various stress responses. Although the NF-Y family has been studied in many species, it is still obscure in Eucalyptus grandis. In this study, 23 EgNF-YB genes in eucalyptus were identified and unevenly distributed on 11 chromosomes. Phylogenetic analysis showed the EgNF-YB genes were divided into two clades, LEC-1 type and non-LEC1 type. The evolution of distinct clades was relatively conservative, the gene structures were analogous, and the differences of genetic structures among clades were small. The expression profiles showed that the distinct EgNF-YB genes were highly expressed in diverse tissues, and EgNF-YB4/6/13/19/23 functioned in response to salinity, heat and cold stresses. Our study characterized the phylogenetic relationship, gene structures and expression patterns of EgNF-YB gene family and investigated their potential roles in abiotic stress responses, which provides solid foundations for further functional analysis of NF-YB genes in eucalyptus.


2021 ◽  
Author(s):  
Yin Liu ◽  
Siyuan He ◽  
Ruixue Zhou ◽  
Xueping Zhang ◽  
Shanshan Yang ◽  
...  

Pancreatic β-cell mass and insulin secretion are determined by the dynamic change of transcription factor expression levels in response to altered metabolic demand. Nuclear factor-Y (NF-Y) is an evolutionarily conserved transcription factor playing critical roles in multiple cellular processes. However, the physiological role of NF-Y in pancreatic β-cells is poorly understood. The present study was undertaken in a conditional knockout of <i>Nf-ya</i> specifically in pancreatic β-cells (<i>Nf-ya </i>βKO) to define the essential physiological role of NF-Y in β-cells. <i>Nf-ya </i>βKO mice exhibited glucose intolerance without changes in insulin sensitivity. Reduced β-cell proliferation resulting in decreased β-cell mass was observed in these mice, which was associated with disturbed actin cytoskeleton. NF-Y-deficient β-cells also exhibited impaired insulin secretion with a reduced Ca<sup>2+</sup> influx in response to glucose, which was associated an inefficient glucose uptake into β-cells due to a decreased expression of glucose transporter 2 and a reduction in ATP production resulting from the disruption of mitochondrial integrity. This study is the first to show that NF-Y is critical for pancreatic islets homeostasis and function through regulation in β-cell proliferation, glucose uptake into β-cells, and mitochondrial energy metabolism. Modulating NF-Y expression in β-cells may therefore offer an attractive approach for therapeutic intervention.


2021 ◽  
Author(s):  
Yin Liu ◽  
Siyuan He ◽  
Ruixue Zhou ◽  
Xueping Zhang ◽  
Shanshan Yang ◽  
...  

Pancreatic β-cell mass and insulin secretion are determined by the dynamic change of transcription factor expression levels in response to altered metabolic demand. Nuclear factor-Y (NF-Y) is an evolutionarily conserved transcription factor playing critical roles in multiple cellular processes. However, the physiological role of NF-Y in pancreatic β-cells is poorly understood. The present study was undertaken in a conditional knockout of <i>Nf-ya</i> specifically in pancreatic β-cells (<i>Nf-ya </i>βKO) to define the essential physiological role of NF-Y in β-cells. <i>Nf-ya </i>βKO mice exhibited glucose intolerance without changes in insulin sensitivity. Reduced β-cell proliferation resulting in decreased β-cell mass was observed in these mice, which was associated with disturbed actin cytoskeleton. NF-Y-deficient β-cells also exhibited impaired insulin secretion with a reduced Ca<sup>2+</sup> influx in response to glucose, which was associated an inefficient glucose uptake into β-cells due to a decreased expression of glucose transporter 2 and a reduction in ATP production resulting from the disruption of mitochondrial integrity. This study is the first to show that NF-Y is critical for pancreatic islets homeostasis and function through regulation in β-cell proliferation, glucose uptake into β-cells, and mitochondrial energy metabolism. Modulating NF-Y expression in β-cells may therefore offer an attractive approach for therapeutic intervention.


2021 ◽  
Vol 12 ◽  
Author(s):  
Geoffrey Thomson ◽  
Lulu Zhang ◽  
Jiangqi Wen ◽  
Kirankumar S. Mysore ◽  
Joanna Putterill

Flowering time influences the yield and productivity of legume crops. Medicago truncatula is a reference temperate legume that, like the winter annual Arabidopsis thaliana, shows accelerated flowering in response to vernalization (extended cold) and long-day (LD) photoperiods (VLD). However, unlike A. thaliana, M. truncatula appears to lack functional homologs of core flowering time regulators CONSTANS (CO) and FLOWERING LOCUS C (FLC) which act upstream of the mobile florigen FLOWERING LOCUS T (FT). Medicago truncatula has three LD-induced FT-like genes (MtFTa1, MtFTb1, and MtFTb2) with MtFTa1 promoting M. truncatula flowering in response to VLD. Another photoperiodic regulator in A. thaliana, FE, acts to induce FT expression. It also regulates the FT transport pathway and is required for phloem development. Our study identifies a M. truncatula FE homolog Medtr6g444980 (MtFE) which complements the late flowering fe-1 mutant when expressed from the phloem-specific SUCROSE-PROTON SYMPORTER 2 (SUC2) promoter. Analysis of two M. truncatula Tnt1 insertional mutants indicate that MtFE promotes flowering in LD and VLD and growth in all conditions tested. Expression of MtFTa1, MtFTb1, and MtFTb2 are reduced in Mtfe mutant (NF5076), correlating with its delayed flowering. The NF5076 mutant plants are much smaller than wild type indicating that MtFE is important for normal plant growth. The second mutant (NF18291) displays seedling lethality, like strong fe mutants. We searched for mutants in MtFTb1 and MtFTb2 identifying a Mtftb2 knock out Tnt1 mutant (NF20803). However, it did not flower significantly later than wild type. Previously, yeast-two-hybrid assays (Y2H) suggested that Arabidopsis FE interacted with CO and NUCLEAR FACTOR-Y (NF-Y)-like proteins to regulate FT. We found that MtFE interacts with CO and also M. truncatula NF-Y-like proteins in Y2H experiments. Our study indicates that despite the apparent absence of a functional MtCO-like gene, M. truncatula FE likely influences photoperiodic FT expression and flowering time in M. truncatula via a partially conserved mechanism with A. thaliana.


2021 ◽  
Vol 541 ◽  
pp. 90-94
Author(s):  
Yanjie Zhang ◽  
Yajun Sun ◽  
Yange Zhang ◽  
Qin Miao ◽  
Qi Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document