unilateral contacts
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 5)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Julien Roux ◽  
Saeid Samadi ◽  
Eisoku Kuroiwa ◽  
Takahide Yoshiike ◽  
Abderrahmane Kheddar
Keyword(s):  

2021 ◽  
Author(s):  
Charles Dorn ◽  
Yang Li ◽  
Sergio Pellegrino

Abstract This paper presents structures with multiple equilibrium configurations arising from the combination of a state of prestress and unilateral contacts. A design problem is posed where preloaded elastic springs and unilateral constraints are embedded throughout a mechanism. The spring parameters are designed such that multiple target configurations are immobilized due to contact. In each of these configurations, the spring forces maintain compressive reaction forces, immobilizing the structure. Each immobilized configuration can rigidly resist perturbation forces up to some finite magnitude where contact is lost. Hence, this case of multiple configurations in equilibrium due to the combination of prestress and contact is referred to as multi-configuration rigidity. Two examples of structures exhibiting multi-configuration rigidity are presented. First, a four bar linkage with a single kinematic degree of freedom is used to introduce the concept. In the context of the linkage, multi-configuration rigidity is compared to multi-stability, exhibiting the key differences between the two concepts. Then, a 24-degree-of-freedom kirigami surface is presented that can morph between flat and spherical configurations, motivated by RF antenna applications. By embedding torsional springs and fold angle stops throughout the structure, flat and spherical configurations are made rigid. Actuation between the configurations can easily be achieved by snapping the structure between the rigid configurations.


Author(s):  
Saeid Samadi ◽  
Julien Roux ◽  
Arnaud Tanguy ◽  
Stephane Caron ◽  
Abderrahmane Kheddar
Keyword(s):  

Arch Bridges ◽  
2020 ◽  
pp. 99-108
Author(s):  
Anna Sinopoli ◽  
Massimo Corradi ◽  
Federico Foce

2019 ◽  
Vol 14 (5) ◽  
Author(s):  
Andreas Enzenhöfer ◽  
Albert Peiret ◽  
Marek Teichmann ◽  
József Kövecses

Modeling multibody systems subject to unilateral contacts and friction efficiently is challenging, and dynamic formulations based on the mixed linear complementarity problem (MLCP) are commonly used for this purpose. The accuracy of the MLCP solution method can be evaluated by determining the error introduced by it. In this paper, we find that commonly used MLCP error measures suffer from unit inconsistency leading to the error lacking any physical meaning. We propose a unit-consistent error measure, which computes energy error components for each constraint dependent on the inverse effective mass and compliance. It is shown by means of a simple example that the unit consistency issue does not occur using this proposed error measure. Simulation results confirm that the error decreases with convergence toward the solution. If a pivoting algorithm does not find a solution of the MLCP due to an iteration limit, e.g., in real-time simulations, choosing the result with the least error can reduce the risk of simulation instabilities and deviation from the reference trajectory.


Author(s):  
Andreas Enzenhöfer ◽  
Albert Peiret ◽  
Marek Teichmann ◽  
József Kövecses

Modeling multibody systems subject to unilateral contacts and friction efficiently is challenging, and dynamic formulations based on the mixed linear complementarity problem (MLCP) are commonly used for this purpose. The accuracy of the MLCP solution method can be evaluated by determining the error introduced by it. In this paper, we find that commonly used MLCP error measures suffer from unit inconsistency leading to the error lacking any physical meaning. We propose a unit-consistent error measure which computes energy error components for each constraint dependent on the inverse effective mass and compliance. It is shown by means of a simple example that the unit consistency issue does not occur using this proposed error measure. Simulation results confirm that the error decreases with convergence toward the solution. If a pivoting algorithm does not find a solution of the MLCP due to an iteration limit, e.g. in real-time simulations, choosing the result with the least error can reduce the risk of simulation instabilities.


2018 ◽  
Vol 29 (5) ◽  
pp. 778-804 ◽  
Author(s):  
P. L. VÁRKONYI

The dynamics of moving solids with unilateral contacts are often modelled by assuming rigidity, point contacts, and Coulomb friction. The canonical example of a rigid rod with one endpoint slipping in two dimensions along a fixed surface (sometimes referred to as Painlevé rod) has been investigated thoroughly by many authors. The generic transitions of that system include three classical transitions (slip-stick, slip reversal, and liftoff) as well as a singularity called dynamic jamming, i.e., convergence to a codimension 2 manifold in state space, where rigid body theory breaks down. The goal of this paper is to identify similar singularities arising in systems with multiple point contacts, and in a broader setting to make initial steps towards a comprehensive list of generic transitions from slip motion to other types of dynamics. We show that – in addition to the classical transitions – dynamic jamming remains a generic phenomenon. We also find new forms of singularity and solution indeterminacy, as well as generic routes from sliding to self-excited microscopic or macroscopic oscillations.


Author(s):  
Albert Peiret ◽  
Farnood Gholami ◽  
József Kövecses ◽  
Josep M. Font-Llagunes

Simulation of large-scale multibody systems with unilateral contacts requires formulations with which good computational performance can be achieved. The availability of many solver algorithms for Linear Complementarity Problems (LCP) makes the LCP-based formulations a good candidate for this. However, considering friction in contacts asks for new friction models compatible with this kind of formulations. Here, a new, regularized friction model is presented to approximate the Coulomb model, which allows to formulate the multibody system dynamics as a LCP with bounds. Moreover, a bristle approach is used to approximate the stiction force, so that it improves the numerical behaviour of the system and makes it able to handle redundancy coming from the friction interfaces. Several examples using a 3D wheel model has been carried out, and the proposed friction model shows a better approximation of the Coulomb model compared to other LCP-based formulations.


2016 ◽  
Vol 85 (4) ◽  
pp. 2207-2231 ◽  
Author(s):  
Arnab Banerjee ◽  
Avishek Chanda ◽  
Raj Das

Sign in / Sign up

Export Citation Format

Share Document