exactly solvable potentials
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 4)

H-INDEX

23
(FIVE YEARS 0)

Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 68
Author(s):  
Géza Lévai

We derive exactly solvable potentials from the formal solutions of the confluent Heun equation and determine conditions under which the potentials possess PT symmetry. We point out that for the implementation of PT symmetry, the symmetrical canonical form of the Heun equation is more suitable than its non-symmetrical canonical form. The potentials identified in this construction depend on twelve parameters, of which three contribute to scaling and shifting the energy and the coordinate. Five parameters control the z(x) function that detemines the variable transformation taking the Heun equation into the one-dimensional Schrödinger equation, while four parameters play the role of the coupling coefficients of four independently tunable potential terms. The potentials obtained this way contain Natanzon-class potentials as special cases. Comparison with the results of an earlier study based on potentials obtained from the non-symmetrical canonical form of the confluent Heun equation is also presented. While the explicit general solutions of the confluent Heun equation are not available, the results are instructive in identifying which potentials can be obtained from this equation and under which conditions they exhibit PT symmetry, either unbroken or broken.


Author(s):  
А. N. Lavrenov ◽  
I. А. Lavrenov

We present the quadratic Hahn algebra QH(3) as an algebra of the hidden symmetry for a certain class of exactly solvable potentials, generalizing the 16D oscillator and its 9D coulomb analogue to the generalized version of the Hurwitz transformation based on SU (1,1)⊕ SU (1,1)  . The solvability of the Schrodinger equation of these problems by the variables separation method are discussed in spherical and parabolic (cylindrical) coordinates. The overlap coefficients between wave functions in these coordinates are shown to coincide with the Clebsch – Gordan coefficients for the SU(1,1) algebra.


Universe ◽  
2020 ◽  
Vol 6 (7) ◽  
pp. 90
Author(s):  
Bao-Fei Li ◽  
Tao Zhu ◽  
Anzhong Wang

The WKB approximation plays an essential role in the development of quantum mechanics and various important results have been obtained from it. In this paper, we introduce another method, the so-called uniform asymptotic approximations, which is an analytical approximation method to calculate the wave functions of the Schrödinger-like equations, and it is applicable to various problems, including cases with poles (singularities) and multiple turning points. A distinguished feature of the method is that in each order of the approximations the upper bounds of the errors are given explicitly. By properly choosing the freedom introduced in the method, the errors can be minimized, which significantly improves the accuracy of the calculations. A byproduct of the method is to provide a very clear explanation of the Langer modification encountered in the studies of the hydrogen atom and harmonic oscillator. To further test our method, we calculate (analytically) the wave functions for several exactly solvable potentials of the Schrödinger equation, and then obtain the transmission coefficients of particles over potential barriers, as well as the quantization conditions for bound states. We find that such obtained results agree with the exact ones extremely well. Possible applications of the method to other fields are also discussed.


2017 ◽  
Vol 57 (6) ◽  
pp. 477 ◽  
Author(s):  
Rajesh Kumar Yadav ◽  
Nisha Kumari ◽  
Avinash Khare ◽  
Bhabani Prasad Mandal

Rationally extended shape invariant potentials in arbitrary D-dimensions are obtained by using point canonical transformation (PCT) method. The bound-state solutions of these exactly solvable potentials can be written in terms of <em>X<sub>m</sub></em> Laguerre or <em>X<sub>m</sub></em> Jacobi exceptional orthogonal polynomials. These potentials are isospectral to their usual counterparts and possess translationally shape invariance property.


Sign in / Sign up

Export Citation Format

Share Document