hydroxycarboxylic acids
Recently Published Documents


TOTAL DOCUMENTS

376
(FIVE YEARS 20)

H-INDEX

35
(FIVE YEARS 2)

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jana Bocková ◽  
Nykola C. Jones ◽  
Uwe J. Meierhenrich ◽  
Søren V. Hoffmann ◽  
Cornelia Meinert

AbstractCircularly polarised light (CPL) interacting with interstellar organic molecules might have imparted chiral bias and hence preluded prebiotic evolution of biomolecular homochirality. The l-enrichment of extra-terrestrial amino acids in meteorites, as opposed to no detectable excess in monocarboxylic acids and amines, has previously been attributed to their intrinsic interaction with stellar CPL revealed by substantial differences in their chiroptical signals. Recent analyses of meteoritic hydroxycarboxylic acids (HCAs) – potential co-building blocks of ancestral proto-peptides – indicated a chiral bias toward the l-enantiomer of lactic acid. Here we report on novel anisotropy spectra of several HCAs using a synchrotron radiation electronic circular dichroism spectrophotometer to support the re-evaluation of chiral biomarkers of extra-terrestrial origin in the context of absolute photochirogenesis. We found that irradiation by CPL which would yield l-excess in amino acids would also yield l-excess in aliphatic chain HCAs, including lactic acid and mandelic acid, in the examined conditions. Only tartaric acid would show “unnatural” d-enrichment, which makes it a suitable target compound for further assessing the relevance of the CPL scenario.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guang-Mei Cao ◽  
Xin-Long Hu ◽  
Li-Li Liao ◽  
Si-Shun Yan ◽  
Lei Song ◽  
...  

AbstractPhotoredox-mediated umpolung strategy provides an alternative pattern for functionalization of carbonyl compounds. However, general approaches towards carboxylation of carbonyl compounds with CO2 remain scarce. Herein, we report a strategy for visible-light photoredox-catalyzed umpolung carboxylation of diverse carbonyl compounds with CO2 by using Lewis acidic chlorosilanes as activating/protecting groups. This strategy is general and practical to generate valuable α-hydroxycarboxylic acids. It works well for challenging alkyl aryl ketones and aryl aldehydes, as well as for α-ketoamides and α-ketoesters, the latter two of which have never been successfully applied in umpolung carboxylations with CO2 (to the best of our knowledge). This reaction features high selectivity, broad substrate scope, good functional group tolerance, mild reaction conditions and facile derivations of products to bioactive compounds, including oxypheonium, mepenzolate bromide, benactyzine, and tiotropium. Moreover, the formation of carbon radicals and carbanions as well as the key role of chlorosilanes are supported by control experiments.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 328
Author(s):  
Raquel Álvarez-Vidaurre ◽  
Alfonso Castiñeiras ◽  
Antonio Frontera ◽  
Isabel García-Santos ◽  
Diego M. Gil ◽  
...  

This work deals with the preparation of pyridine-3-carbohydrazide (isoniazid, inh) cocrystals with two α-hydroxycarboxylic acids. The interaction of glycolic acid (H2ga) or d,l-mandelic acid (H2ma) resulted in the formation of cocrystals or salts of composition (inh)·(H2ga) (1) and [Hinh]+[Hma]–·(H2ma) (2) when reacted with isoniazid. An N′-(propan-2-ylidene)isonicotinic hydrazide hemihydrate, (pinh)·1/2(H2O) (3), was also prepared by condensation of isoniazid with acetone in the presence of glycolic acid. These prepared compounds were well characterized by elemental analysis, and spectroscopic methods, and their three-dimensional molecular structure was determined by single crystal X-ray crystallography. Hydrogen bonds involving the carboxylic acid occur consistently with the pyridine ring N atom of the isoniazid and its derivatives. The remaining hydrogen-bonding sites on the isoniazid backbone vary based on the steric influences of the derivative group. These are contrasted in each of the molecular systems. Finally, Hirshfeld surface analysis and Density-functional theory (DFT) calculations (including NCIplot and QTAIM analyses) have been performed to further characterize and rationalize the non-covalent interactions.


Author(s):  
Mathias Pickl ◽  
Roser Marin-Valls ◽  
Jesús Joglar ◽  
Jordi Bujons ◽  
Pere Clapés

2021 ◽  
Vol 33 (4) ◽  
pp. 839-845
Author(s):  
Kishanpal Singh ◽  
Harvinder Singh Sohal ◽  
Baljit Singh

In present work, the formation of α-hydroxycarboxylic acids have been described from various aromatic aldehydes and ketones via direct electrocarboxylation method with 80-92% of yield without any side product and can be purified by simple recrystallization using sacrificial Mg anode and Pt cathode in an undivided cell, CO2 at (1 atm) was continuously bubbled in the cell throughout the reaction using tetrapropyl-ammonium chloride as a supporting electrolyte in acetonitrile. The synthesized compounds obtained in fair to excellent yield with a high level of purity. The characterization of electrocarboxylated compounds was done with spectroscopic techniques like IR, NMR (1H & 13C), mass and elemental analysis.


2021 ◽  
Author(s):  
Jana Bocková ◽  
Nykola Jones ◽  
Uwe Meierhenrich ◽  
Søren Hoffmann ◽  
Cornelia Meinert

Abstract Circularly polarised light (CPL) interacting with interstellar organic molecules might have imparted chiral bias and hence preluded prebiotic evolution of biomolecular homochirality. The l-enrichment of extra-terrestrial amino acids in meteorites, as opposed to no detectable excess in monocarboxylic acids and amines, has previously been attributed to their intrinsic interaction with stellar CPL revealed by substantial differences in their chiroptical signals. Recent analyses of meteoritic hydroxycarboxylic acids (HCAs) – potential co-building blocks of ancestral proto-peptides – showed an enantiomeric excess in l-lactic acid. Here we report on novel anisotropy spectra of several HCAs using a synchrotron radiation electronic circular dichroism spectrophotometer to support the re-evaluation of chiral biomarkers of extra-terrestrial origin in the context of absolute photochirogenesis. We found that irradiation by CPL which would yield l-excess in amino acids would also yield lexcess in aliphatic chain HCAs including lactic acid as well as mandelic acid in the examined conditions. Only tartaric acid would show “unnatural” d-enrichment, which makes it a suitable target compound for further assessing the relevance of the CPL scenario.


2021 ◽  
Vol 60 ◽  
pp. 200-206
Author(s):  
Diego Salamanca ◽  
Katja Bühler ◽  
Karl-Heinrich Engesser ◽  
Andreas Schmid ◽  
Rohan Karande

2020 ◽  
Vol 3 (12) ◽  
pp. 8559-8566
Author(s):  
Hanan Moussa ◽  
Wenge Jiang ◽  
Amir El Hadad ◽  
Ammar A. Alsheghri ◽  
Tayebeh Basiri ◽  
...  

2020 ◽  
Author(s):  
Isabel Garcia-Santos ◽  
Raquel Álvarez-Vidaurre ◽  
Alfonso Castiñeiras ◽  
Rocío Torres

Author(s):  
Erik Müller ◽  
Olga Sosedov ◽  
Janosch Alexander David Gröning ◽  
Andreas Stolz

Abstract Objectives Chiral 2-hydroxycarboxylic acids and 2-hydroxycarboxamides are valuable synthons for the chemical industry. Results The biocatalytic syntheses of (R)-mandelic acid and (R)-mandelic acid amide by recombinant Escherichia coli clones were studied. Strains were constructed which simultaneously expressed a (R)-specific oxynitrilase (hydroxynitrile lyase) from the plant Arabidopsis thaliana together with the arylacetonitrilase from the bacterium Pseudomonas fluorescens EBC191. In addition, recombinant strains were constructed which expressed a previously described acid tolerant variant of the oxynitrilase and an amide forming variant of the nitrilase. The whole cell catalysts which simultaneously expressed the (R)-specific oxynitrilase and the wild-type nitrilase transformed in slightly acidic buffer systems benzaldehyde plus cyanide preferentially to (R)-mandelic acid with ee-values > 95%. The combination of the (R)-specific oxynitrilase with the amide forming nitrilase variant gave whole cell catalysts which converted at pH-values ≤ pH 5 benzaldehyde plus cyanide with a high degree of enantioselectivity (ee > 90%) to (R)-mandelic acid amide. The acid and the amide forming catalysts also converted chlorinated benzaldehydes with cyanide to chlorinated mandelic acid or chlorinated mandelic acid amides. Conclusions Efficient systems for the biocatalytic production of (R)-2-hydroxycarboxylic acids and (R)-2-hydroxycarboxamides were generated.


Sign in / Sign up

Export Citation Format

Share Document