cyanobacterial species
Recently Published Documents


TOTAL DOCUMENTS

194
(FIVE YEARS 73)

H-INDEX

28
(FIVE YEARS 5)

2022 ◽  
Vol 8 ◽  
Author(s):  
Felipe de Vargas Ribeiro ◽  
Taiara Aguiar Caires ◽  
Marcela Alvarenga de Almeida Simões ◽  
Paulo Iiboshi Hargreaves ◽  
Livia Bonetti Villela ◽  
...  

Benthic cyanobacterial mats (BCMs) are conspicuous components of coral reef communities, where they play key ecological roles as primary producers among others. BCMs often bloom and might outcompete neighboring benthic organisms, including reef-building corals. We investigated the cyanobacterial species composition of three BCMs morphotypes from the marginal reef complex of Abrolhos Bank (Southeastern Brazil). Also, we assessed their allelopathic effects on coral zooxanthellae, their susceptibility to herbivory by fish, and their toxicity to brine shrimp nauplii. Morphology and 16S rDNA sequencing unveiled the cyanobacteria Moorena bouillonii, Okeania erythroflocculosa, Adonisia turfae, Leptolyngbya sp., and Halomicronema sp. as components of BCMs from Abrolhos. BCMs cell-free filtrates and extracts exerted an allelopathic effect by reducing the growth of the ex hospite Symbiodinium sp. in culture. BCMs-only treatments remained untouched in field susceptibility assays in contrast to macroalgae only and mixed BCMs-macroalgae treatments that had the macroalgae fully removed by reef fish. Crude aqueous extracts from BCMs were toxic to brine shrimps in acute assays. Besides unveiling the diversity of BCMs consortia in Abrolhos, our results cast some light on their allelopathy, antiherbivory, and toxicity properties. These antagonistic interactions might promote adverse cascading effects during benthic cyanobacteria blooms and in gradual shifts to BCMs-dominated states.


2021 ◽  
Vol 14 (1) ◽  
pp. 123
Author(s):  
Theodoti Papadimitriou ◽  
Matina Katsiapi ◽  
Natassa Stefanidou ◽  
Aikaterini Paxinou ◽  
Vasiliki Poulimenakou ◽  
...  

Cyanobacterial blooms have been known since ancient times; however, they are currently increasing globally. Human and ecological health risks posed by harmful cyanobacterial blooms have been recorded around the world. These risks are mainly associated with their ability to affect the ecosystem chain by different mechanisms like the production of cyanotoxins, especially microcystins. Their expansion and their harmful effects have led many researchers to seek techniques and strategies to control them. Among them, hydrogen peroxide could be a promising tool against cyanobacteria and cyanotoxins and it is well-established as an environmentally friendly oxidizing agent because of its rapid decomposition into oxygen and water. The aim of the present study was to evaluate the effect of hydrogen peroxide on phytoplankton from two hypertrophic waterbodies in Greece. The effect of hydrogen peroxide on concentration of microcystins found in the waterbodies was also studied. Treatment with 4 mg/L hydrogen peroxide was applied to water samples originated from the waterbodies and Cyanobacterial composition and biomass, phycocyanin, chlorophyll-a, and intra-cellular and total microcystin concentrations were studied. Cyanobacterial biomass and phycocyanin was reduced significantly after the application of 4 mg/L hydrogen peroxide in water treatment experiments while chlorophytes and extra-cellular microcystin concentrations were increased. Raphidiopsis (Cylindrospermopsis) raciborskii was the most affected cyanobacterial species after treatment of the water of the Karla Reservoir in comparison to Aphanizomenon favaloroi, Planktolyngbya limnetica, and Chroococcus sp. Furthermore, Microcystis aeruginosa was more resistant to the treatment of Pamvotis lake water in comparison with Microcystis wesenbergii and Microcystis panniformis. Our study showed that hydrogen peroxide differentially impacts the members of the phytoplankton community, affecting, thus, its overall efficacy. Different effects of hydrogen peroxide treatment were observed among cyanobacerial genera as well as among cyanobacterial species of the same genus. Different effects could be the result of the different resistance mechanisms of each genus or species to hydrogen peroxide. Hydrogen peroxide could be used as a treatment for the mitigation of cyanobacterial blooms in a waterbody; however, the biotic and abiotic characteristics of the waterbody should be considered.


Author(s):  
Keting Yuan ◽  
Qiong Wan ◽  
Dajun Ren ◽  
Beibei Chai ◽  
Aiqing Kang ◽  
...  

Abstract Microcystis aeruginosa is a globally important cyanobacterial species that poses a threat to human health and development. The use of bacteria to control algal blooms has become an important research topic in recent years. In the present work, the algicidal strain G1 was isolated from sediments of a reservoir in Xi'an, China, identified by 16S ribosomal DNA (rDNA), and its algicidal effects were investigated. The rDNA sequence of G1 (GenBank accession number MW205793) is 99.86% similar to that of Chitinimonas sp., and the strain indirectly solubilised algae. Algae removal by G1 was optimal during the decay phase (algae solubilisation rate = 65.85%). Temperature (5–120 °C) did not significantly affect algae removal, pH 5–9 was tolerated, and pH 7 achieved the highest algae lysis rate (63.56%). Ultrasonic treatment of G1 destroyed the algae-solubilising effect. An injection ratio of 15% achieved the highest algae lysis rate (67.64%) under 12 h:12 h light:dark conditions, and full darkness achieved the highest algae lysis rate (68.21%). Thus, G1 can effectively inhibit the reproduction of M. aeruginosa, making it a promising biological agent for controlling algal growth.


Author(s):  
Kristen E. Wendt ◽  
Patricia Walker ◽  
Annesha Sengupta ◽  
Justin Ungerer ◽  
Himadri B. Pakrasi

Natural transformation is the process by which bacteria actively take up and integrate extracellular DNA into their genomes. In cyanobacteria, natural transformation has only been experimentally demonstrated in a handful of species. Although, cyanobacteria are important model systems for studying photosynthesis and circadian cycling, natural transformation in cyanobacteria has not been characterized to the degree that the process has been studied in other gram-negative bacteria. Two cyanobacterial species that are 99.8% genetically identical provide a unique opportunity to better understand the nuances of natural transformation in cyanobacteria: Synechococcus elongatus PCC 7942 and Synechococcus elongatus UTEX 2973 (hereafter Synechococcus 7942 and Synechococcus 2973 respectively). Synechococcus 7942 is a naturally transformable model system, while Synechococcus 2973 is a recently discovered species that is not naturally competent. Taking only 1.5 hours to replicate, Synechococcus 2973 is the fastest growing cyanobacterial species known, and thus is a strong candidate for serving as a model organism. However, the organism’s inability to undergo natural transformation has prevented it from becoming a widely used model system. By substituting polymorphic alleles from Synechococcus 7942 for native Synechococcus 2973 alleles, natural transformation was introduced into Synechococcus 2973. Two genetic loci were found to be involved in differential natural competence between the two organisms: transformation pilus component pilN and circadian transcriptional master regulator rpaA . By using targeting genome editing and enrichment outgrowth, a strain that was both naturally transformable and fast-growing was created. This new Synechococcus 2973-T strain will serve as a valuable resource to the cyanobacterial research community. Importance Certain bacterial species have the ability to take up naked extracellular DNA and integrate it into their genomes. This process is known as natural transformation and is widely considered to play a major role in bacterial evolution. Because of the ease of introducing new genes into naturally transformable organisms, this capacity is also highly valued in the laboratory. Cyanobacteria are photosynthetic and can therefore serve as model systems for some important aspects of plant physiology. Here, we describe the creation of a modified cyanobacterial strain ( Synechococcus 2973-T) that is capable of undergoing natural transformation and has a replication time that is on par with the fastest-growing cyanobacterium that has been discovered to date. This new cyanobacterium has the potential to serve as a new model organism for the cyanobacterial research community and will allow experiments to be completed in a fraction of the time that it took to complete previous assays.


2021 ◽  
Author(s):  
Parveen Akhtar ◽  
Avratanu Biswas ◽  
Fanny Balog-Vig ◽  
Ildiko Domonkos ◽  
László Kovács ◽  
...  

In cyanobacteria, phycobilisomes serve as peripheral light-harvesting complexes of the two photosystems, extending their antenna size and the wavelength range of photons available for photosynthesis. The abundance of phycobilisomes, the number of phycobiliproteins they contain, and their light-harvesting function are dynamically adjusted in response to the physiological conditions. Phycobilisomes are also thought to be involved in state transitions that maintain the excitation balance between the two photosystems. Unlike its eukaryotic counterpart, PSI is trimeric in many cyanobacterial species and the physiological significance of this is not well understood. Here we compared the composition and light-harvesting function of phycobilisomes in cells of Synechocystis PCC 6803, which has primarily trimeric PSI, and the ?psaL mutant unable to form trimers. We also investigated a mutant additionally lacking the PsaJ and PsaF subunits of PSI, as PsaF has been proposed to facilitate interaction with phycobilisomes. Both strains with monomeric PSI accumulated significantly less phycocyanin (which constitutes the phycobilisome rods) per chlorophyll, while the allophycocyanin content was unchanged compared to WT. These data show that cells with monomeric PSI have higher abundance of smaller phycobilisomes. Steady-state and time-resolved fluorescence spectroscopy at room temperature and 77 K revealed that PSII receives more energy from the phycobilisomes at the expense of PSI in cells with monomeric PSI, regardless of the presence of PsaF. Taken together, these results show that the trimeric organization of PSI is advantageous for efficient and balanced excitation energy transfer from phycobilisomes in Synechocystis.


Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1061
Author(s):  
Pavitra Nandagopal ◽  
Anthony Nyangson Steven ◽  
Liong-Wai Chan ◽  
Zaidah Rahmat ◽  
Haryati Jamaluddin ◽  
...  

Cyanobacteria are the most abundant oxygenic photosynthetic organisms inhabiting various ecosystems on earth. As with all other photosynthetic organisms, cyanobacteria release oxygen as a byproduct during photosynthesis. In fact, some cyanobacterial species are involved in the global nitrogen cycles by fixing atmospheric nitrogen. Environmental factors influence the dynamic, physiological characteristics, and metabolic profiles of cyanobacteria, which results in their great adaptation ability to survive in diverse ecosystems. The evolution of these primitive bacteria resulted from the unique settings of photosynthetic machineries and the production of bioactive compounds. Specifically, bioactive compounds play roles as regulators to provide protection against extrinsic factors and act as intracellular signaling molecules to promote colonization. In addition to the roles of bioactive metabolites as indole alkaloids, terpenoids, mycosporine-like amino acids, non-ribosomal peptides, polyketides, ribosomal peptides, phenolic acid, flavonoids, vitamins, and antimetabolites for cyanobacterial survival in numerous habitats, which is the focus of this review, the bioactivities of these compounds for the treatment of various diseases are also discussed.


2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Soniya Devi ◽  
Nisha Rani ◽  
Anand Sagar

In the present investigation, three strains of cyanobacteria isolated from agricultural fields near to salt mine were used as biofertilizer individually and in consortia. Farm yard manure was also used along with cyanobacterial biofertilizers to see the ameliorative effect on soil physical, chemical and biological properties. The algalization experiment was conducted in pots in the glass house of the department for 240 days. There was an improvement in carbon, nitrogen, phosphate, potassium, magnesium, calcium, zinc, iron, copper and manganese with biofertilizers treatment whereas sodium ion, EC and pH were found to be decreased. Soil microbial activities and plant growth parameters were found to be improved. Thus, the cyanobacterial species show promise in effective exploitation for phytoremediation and improved productivity of saline soils.


2021 ◽  
Vol 11 (20) ◽  
pp. 9396
Author(s):  
Tomás Rodríguez-Gil ◽  
Alejandro Torrado ◽  
Macarena Iniesta-Pallarés ◽  
Consolación Álvarez ◽  
Vicente Mariscal ◽  
...  

Cytochrome cM was first described in 1994 and its sequence has been found in the genome of manifold cyanobacterial species ever since. Numerous studies have been carried out with the purpose of determining its function, but none of them has given place to conclusive results so far. Many of these studies are based on the assumption that cytochrome cM is a soluble protein located in the thylakoid lumen of cyanobacteria. In this work, we have reevaluated the sequence of cytochrome cM, with our results showing that its most probable 3D structure is strongly similar to that of the C subunit of the bacterial nitric oxide reductase. The potential presence of an α-helix tail, which could locate this protein in the thylakoid membrane, further supports this hypothesis, thus providing a new, unexpected role for this redox protein.


Sign in / Sign up

Export Citation Format

Share Document