comminution process
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 16)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 1 ◽  
pp. 2681-2690
Author(s):  
Kanishk Bhadani ◽  
Gauti Asbjörnsson ◽  
Paul Bepswa ◽  
Aubrey Mainza ◽  
Elibariki Andrew ◽  
...  

AbstractA comminution process is a material size reduction and separation process which is primarily used in the aggregates and the minerals processing industry. Knowledge related to equipment’s operation, raw material properties, operational strategies, control system, maintenance, etc. is needed to design a capable plant. New needs are arising from the industry for existing operational crushing plants such as investigation for improvements, upscaling, and downscaling of the capacity. The paper presents an application of simulation-driven development for a crushing plant in an existing gold processing plant. Due to the change in ore characteristics and the need for optimizing the cost of operation, it is required to investigate the opportunities for improvement and alternative options for downscaling the capacity of the plant. A systematic process for configuring, developing, and evaluating alternative concepts using a process simulation tool is presented. The results show the process of generating knowledge for alternative crushing plant operation settings and how the choices can be selected and eliminated using boundary conditions. The evaluation presents possible improvements and alternative concepts with their opportunities and pitfalls.


2021 ◽  
Vol 41 (3) ◽  
pp. e87761
Author(s):  
Ignacio Ortiz de Landazuri Suárez ◽  
María José Oliveros Colay

In many cases, the design process of a structural ceramic comminution plant typically consists of an ‘expert designer’ who makes decisions using intuitive criteria to select commercial equipment. This paper proposes a simulationbased optimization approach to help decisionmaking. The complexity of the problem lies in selecting the model and amount of equipment for each stage at the lowest cost while simultaneously satisfying a previously fixed production and granulometry. The proposed approach is based on a genetic algorithm to generate solutions and facilitate the optimization process, together with discrete simulation to evaluate the performance of the comminution process according to its service level. To evaluate the algorithm, different problems, whose parameters are based on the requirements of the ceramic industry, are solved and analyzed.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2008
Author(s):  
Dariusz Urbaniak ◽  
Henryk Otwinowski ◽  
Tomasz Wyleciał ◽  
Vladimir Pavlovich Zhukov ◽  
Aleksei Yevgenyevich Barochkin ◽  
...  

Raw materials are used in many industrial technologies. The raw material frequently has to be prepared as an intermediate with an appropriate particle size distribution, which requires the use of grinding. In grinding processes, energy consumption is a very important profitability criterion for the applied particular size reduction technology. The paper describes the comminution process that takes place in the jet mill using a modified form of the thermodynamic theory of grinding. In this theory, new material characteristics have been added: the surface and volumetric density of grinding energy. The thermodynamic theory is a combination of the classical Kick’s theory and the modified form of Rittinger’s theory. The tested physical magnitudes are a measure of the energy consumption of the grinding process. They describe the energy that must be provided in the grinding process to overcome interactions between particles related to the volume and surface of the material. Knowledge of these magnitudes is necessary to model thermomechanical phenomena in the solid state. The paper presents the results of research on comminution in a jet mill, on the basis of which the values of the tested material magnitudes were determined. It is graphically shown how the values of the tested magnitudes depend on the grain size of the ground samples.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 306
Author(s):  
Michael Klichowicz ◽  
Holger Lieberwirth

The comminution at the grain size level for liberating the valuable minerals usually requires the highest size-specific energy. Therefore, a full understanding of the comminution process at this level is essential. Models based on the Discrete Element Method (DEM) can become a helpful tool for this purpose. One major concern, however, is the missing representativeness of mineral microstructures in the simulations. In this study, a method to overcome this limitation is presented. The authors show how a realistic microstructure can be implemented into a particle bed comminution simulation using grain-based models in DEM (GBM-DEM). The improved algorithm-based modeling approach is exemplarily compared to an equivalent real experiment. The simulated results obtained within the presented study show that it is possible to reproduce the interfacial breakage observed in real experiments at the grain size level. This is of particular interest as the aim of comminution in mineral processing is not only the size reduction of coarse particles, but often an efficient liberation of valuable components. Simulations with automatically generated real mineral microstructures will help to further improve the efficiency of ore processing.


2021 ◽  
Vol 163 ◽  
pp. 106746
Author(s):  
Michał J. Marijnissen ◽  
Cezary Graczykowski ◽  
Jerzy Rojek

Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 217
Author(s):  
Qing Guo ◽  
Yongtai Pan ◽  
Qiang Zhou ◽  
Chuan Zhang ◽  
Yankun Bi

Profound knowledge of the movement characteristics and spatial distribution of the particles under compression during the crushing of rocks and ores is essential to further understanding kinetic energy release law. Various experimental methods such as high-speed camera technology, the coordinate method, and the color tracking method were adopted to improve the understanding of particles’ movement characteristics and spatial distribution in rock comminution. The average horizontal velocities of the four size particles α, β, γ, and δ are statistically calculated. The descending order of the particles’ average velocity is γ, β, α, and δ. In comparison, the descending order of the particles’ kinetic energy is α, β, γ, and δ. Moreover, the contribution of α particles to the total kinetic energy exceeds 70%. The spatial distribution characteristics of coarse and fine particles show different results. The probability of fine particles appearing in the range closer to the center area is greater, while the position of large particles appears to be more random. The color tracking results show that super-large particles generated by crushing are on the specimen’s surface, while small particles are generally produced from inside. The above results indicate a connection between the particle generation mechanism, movement characteristics, and spatial distribution in the comminution process.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6735
Author(s):  
Mateusz Góralczyk ◽  
Pavlo Krot ◽  
Radosław Zimroz ◽  
Szymon Ogonowski

Tumbling mills have been widely implemented in many industrial sectors for the grinding of bulk materials. They have been used for decades in the production of fines and in the final stages of ore comminution, where optimal levels for the enrichment particles’ sizes are obtained. Even though these ubiquitous machines of relatively simple construction have been subjected to extensive studies, the industry still struggles with very low energy efficiency of the comminution process. Moreover, obtaining an optimal size for the grinding product particles is crucial for the effectiveness of the following processes and waste production reduction. New, innovative processing methods and machines are being developed to tackle the problem; however, tumbling mills are still most commonly used in all ranges of the industry. Since heavy equipment retrofitting is the most costly approach, process optimization with dedicated models and control systems is the most preferable solution for energy consumption reduction. While the classic technological measurements in mineral processing are well adopted by the industry, nowadays research focuses on new methods of the mill’s internal dynamics analysis and control. This paper presents a retrospective overview of the existing models of internal load motion, an overview of the innovations in process control, and some recent research and industrial approaches from the energy consumption reduction point of view.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ataallah Bahrami ◽  
Morteza Abdollahi ◽  
Mirsaleh Mirmohammadi ◽  
Fatemeh Kazemi ◽  
Abolfazl Danesh ◽  
...  

AbstractThis study is conducted with the aim of investigating the efficiency of open and closed-circuit molybdenite ore comminution processes (primary and secondary mill, respectively), through mineralogical study of mills feed and product. For this purpose, particle size distribution, minerals distribution, degree of liberation and interlocking of minerals in mills feed and product were studied. According to the results, chalcopyrite, molybdenite, pyrite and covellite constitute the major part of the mineral composition of open-circuit mill feed. Minerals at the mill product, in the order of abundance include liberated molybdenite particles, liberated chalcopyrite and interlocked chalcopyrite with pyrite, liberated and interlocked pyrite particles, and associated silicate gangues. The d50 values of the feed and product particles of the open-circuit mill are equal to 13.80 and 13.40 microns, respectively. Degree of liberation of molybdenite for the feed and product of this mill is almost the same and is equal to 98.0%. Closed-circuit mill feed includes, in order of is abundance, liberated molybdenite particles in the form of blades and irregular polygonal shapes, liberated and interlocked chalcopyrite, and liberated and interlocked pyrite particles with gangue minerals. Molybdenite particles in the mill product are almost completely liberated, and the degree of liberation values of chalcopyrite and pyrite are 84.40% and 91.40%, respectively. According to particles size distribution of the feed (d50 equal to 25.03 microns) and the product (d50 equal to 24.24 microns) of closed-circuit mill, it can be stated that comminution is not well-operated in closed-circuit mill due to the low solid percentage of closed-circuit mill feed and the inefficiency of hydrocyclone. Examination of Mo, Cu, and Fe grade variations for 10 days in both off and on modes of mill shows that closed-circuit mill does not have an impact on comminution process. It can even be concluded that the mill has a destructive effect the flotation process by producing slimes.


Sign in / Sign up

Export Citation Format

Share Document