expansive concrete
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 22)

H-INDEX

6
(FIVE YEARS 3)

2021 ◽  
Vol 11 (1) ◽  
pp. 14
Author(s):  
Abir Mahmood ◽  
A. B. M. Amrul Kaish ◽  
Nor Farhana Binti Ab Gulam ◽  
Sudharshan N. Raman ◽  
Maslina Jamil ◽  
...  

Expansive concrete are used to reduce cracking caused by drying shrinkage in concrete structures such as slabs, beams, columns, and pavement constructions. Although CaO and Sulphoaluminate based expansive agents have been used for decades, MgO-based expansive agents have demonstrated superior performance since 1970, especially for concrete dam structures. It has been proven that compensating shrinkage with MgO expansion efficiently prevents thermal cracking of mass concrete, reduces the expense of temperature control systems, and speeds up the construction process. This paper reviews several parameters such as reactivity, thickness of water film, curing condition, additive ratio, and calcination condition that affects expansibility, strength, soundness, durability, flowability, pore structures, crystal size, and hydration activity. The review indicates that the expansion characteristics of MgO may be designed flexibly by altering the calcination conditions (calcining temperature and residence time), maintaining a certain curing temperature, and tweaking its microstructure.


2021 ◽  
Vol 35 (3) ◽  
pp. 352-360
Author(s):  
Xuan-ming Ding ◽  
Wei-ting Deng ◽  
Yu Peng ◽  
Hang Zhou ◽  
Chun-yan Wang

2021 ◽  
Vol 350 ◽  
pp. 00010
Author(s):  
Volha Sannikava ◽  
Viktar Tur

This paper proposes a design model (2D MSDM) for assessment the early-age stress-strain parameters of two-axially restrained expansive concrete elements. The analytical model allows defining the restrained expansion strains and corresponding self-stresses in case of arbitrary restraint conditions in orthogonal directions by taking into consideration the elastic-plastic behavior of concrete during the expansion period. The results of solution according to the proposed model were compared with the experimental results of expansive concrete elements with orthogonal confinement carried out by authors and other researchers.


2020 ◽  
Vol 19 (4) ◽  
pp. 085-094
Author(s):  
Viktar V. Tur ◽  
Volha H. Sannikava

The paper presents the implementation of the modified strains development model (MSDM) for the two-way restrained self-stressed members such as expansive concrete-filled steel tubes and expansive concrete plane elements with arbitrary orthogonal reinforcement. The analytical approach allows defining the restrained strains and stresses in any 2D restraint conditions by following the iterative procedures and accounting for the elastic-plastic behaviour of expansive concrete at an early age. The consistency of the proposed method was confirmed by assessing the experimental results of the two series of the expansive concrete-filled steel tubes and three series of the expansive concrete plane members with mesh reinforcement in the centre of gravity.


2020 ◽  
Vol 262 ◽  
pp. 120422
Author(s):  
Hoang Viet Nguyen ◽  
Kenichiro Nakarai ◽  
Kien Hoang Pham ◽  
Saeko Kajita ◽  
Takahiro Sagawa

2020 ◽  
Vol 54 (29) ◽  
pp. 4557-4573
Author(s):  
Qi Cao ◽  
Xianrui Lv ◽  
Xiaojun Li ◽  
Changjun Zhou ◽  
Shide Song

High-strength concrete-encased-steel filled CFRP (carbon fiber reinforced polymer) tube (HCSFC) takes advantages of high strength of concrete, steel and confinement of FRP, resulting in enhanced structural load carrying capacity and deformability. In this study, expansive high-strength concrete is filled between CFRP tube and sectional steel to study the mechanical properties of high-strength expansive concrete-encased-steel filled CFRP tube (HECSFC) under monotonic and cyclic axial compression. Twenty-four specimens were fabricated in this study. The variables included the number of CFRP layers (0, 1, 2 layers), cross-sectional shape (circular and square), self-stress level (with or without self-stress) and loading mode (monotonic and cyclic). Test results show that the peak load of HCSFC specimen is greater than their nominal load-carrying capacity, which indicates that CFRP plays a confinement role on the internal core concrete-encased-steel. As the number of layers increases, both the normalized peak load and the ultimate axial strain increase. For specimens under the same number of layers, cross sectional shape and loading mode, the ultimate axial strain and strain reduction factor of self-stressing specimens are higher than those of nonprestressed specimens. At the same time, it is found that the confinement efficiency of CFRP on circular specimen is higher than that of square specimen. Analytical results show that the modified existing stress-strain models of CFRP confined concrete predict well with the experimental results.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2136
Author(s):  
Nguyen Duc Van ◽  
Emika Kuroiwa ◽  
Jihoon Kim ◽  
Hyeonggil Choi ◽  
Yukio Hama

This paper presents the results of an experimental investigation of the effect of the restrained condition on the mechanical properties, frost resistance, and carbonation resistance of expansive concrete with different water–binder ratios. In this study, length change ratio test, expansion strain test, compressive strength test, mercury intrusion porosimetry test, underwater weighing test, freezing–thawing test, and accelerated carbonation test were performed to evaluate the mechanical properties, pore size distribution, total porosity, and durability of expansive concrete under both restrained and unrestrained conditions. The test results indicate that the length change ratio and expansion strain of the expansive concrete were controlled by the restrained condition. The compressive strength of expansive concrete was enhanced by the triaxial restraining when the amount of expansive additive was 40 kg/m3 of concrete. Two hypotheses were described to explain the change of pore structure change expansive mortar. The results also indicate that the carbonation resistance and frost resistance were improved by the uniaxial restrained condition. Furthermore, the effect of the restrained condition must be considered to evaluate not only the experimental results of the expansive concrete with a high EX replacement level but also the expansive concrete combining other cement replacement materials.


2020 ◽  
pp. 93-98
Author(s):  
Viktar V. Tur ◽  
Radoslaw Duda ◽  
Dina Khmaruk ◽  
Viktar Basav

In this paper, a modified strains development model (MSDM) for expansive concrete-filled steel tube (ECFST) was formulated and verified on the experimental data, obtained from testing specimens on the expansion stage. The modified strain development model for restraint strains and self-stresses values estimation in concrete with high expansion energy capacity under any type of the symmetrical and unsymmetrical finite stiffness restraint conditions was proposed. Based on proposed MSDM a new model for expansive concrete-filled steel tubes is developed. The main difference between this model and other previously developed models consists in taking into account in the basic equations an induced force in restrain that is considered as an external load applied to the concrete core of the member. For verification of the proposed model-specific experimental studies were performed. As follows from comparison results restrained expansion strains values calculated following the proposed model shows good compliance with experimental data. The values predicted by the proposed MSDM for concrete-filled steel and obtained experimental data demonstrated good agreement that confirms the validity of the former.


Sign in / Sign up

Export Citation Format

Share Document