Unprecedented advantages in cancer treatment with immune checkpoint inhibitors (ICI) remain limited to a subset of patients. Systemic analyses of the regulatory 3D genome architecture linked to individual epigenetics and immunogenetic controls associated with tumour immune evasion mechanisms and immune checkpoint pathways reveals a highly prevalent patient molecular profiles predictive of response to PD-(L)1 immune checkpoint inhibitors. A clinical blood test based on the set of 8 3D genomic biomarkers has been developed and validated on several independent cancer patient cohorts to predict response to PD-(L)1 immune checkpoint inhibition. The predictive 8 biomarker set is derived from prospective observational clinical trials, representing 229 treatments with Pembrolizumab, Atezolizumab, Durvalumab, in diverse indications: melanoma, non-small cell lung, urethral, hepatocellular, bladder, prostate cancer, head and neck, vulvar, colon, breast, bone, brain, lymphoma, larynx cancer, and cervix cancers.
The 3D genomic 8 biomarker panel for response to immune checkpoint therapy achieved high accuracy up to 85%, sensitivity of 93% and specificity of 82%. This study demonstrates that a 3D genomic approach could be used to develop a predictive clinical assay for response to PD-(L)1 checkpoint inhibition in cancer patients.