feynman graphs
Recently Published Documents


TOTAL DOCUMENTS

150
(FIVE YEARS 23)

H-INDEX

19
(FIVE YEARS 0)

Author(s):  
Valentin Bonzom ◽  
Victor Nador ◽  
Adrian Tanasa

Abstract We study the double scaling limit of the O(N)3-invariant tensor model, initially introduced in Carrozza and Tanasa, Lett. Math. Phys. (2016). This model has an interacting part containing two types of quartic invariants, the tetrahedric and the pillow one. For the 2-point function, we rewrite the sum over Feynman graphs at each order in the 1/N expansion as a finite sum, where the summand is a function of the generating series of melons and chains (a.k.a. ladders). The graphs which are the most singular in the continuum limit are characterized at each order in the 1/N expansion. This leads to a double scaling limit which picks up contributions from all orders in the 1/N expansion. In contrast with matrix models, but similarly to previous double scaling limits in tensor models, this double scaling limit is summable. The tools used in order to prove our results are combinatorial, namely a thorough diagrammatic analysis of the Feynman graphs, as well as an analytic analysis of the singularities of the relevant generating series.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 586
Author(s):  
Manuel Campos ◽  
German Sierra ◽  
Esperanza Lopez

We present a new tensor network algorithm for calculating the partition function of interacting quantum field theories in 2 dimensions. It is based on the Tensor Renormalization Group (TRG) protocol, adapted to operate entirely at the level of fields. This strategy was applied in Ref.[1] to the much simpler case of a free boson, obtaining an excellent performance. Here we include an arbitrary self-interaction and treat it in the context of perturbation theory. A real space analogue of the Wilsonian effective action and its expansion in Feynman graphs is proposed. Using a λϕ4 theory for benchmark, we evaluate the order λ correction to the free energy. The results show a fast convergence with the bond dimension, implying that our algorithm captures well the effect of interaction on entanglement.


Author(s):  
Kyosuke Higashida ◽  
Masahiko Yoshinaga

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Nikolay Gromov ◽  
Julius Julius ◽  
Nicolò Primi

Abstract We consider a cusped Wilson line with J insertions of scalar fields in $$ \mathcal{N} $$ N = 4 SYM and prove that in a certain limit the Feynman graphs are integrable to all loop orders. We identify the integrable system as a quantum fishchain with open boundary conditions. The existence of the boundary degrees of freedom results in the boundary reflection operator acting non-trivially on the physical space. We derive the Baxter equation for Q-functions and provide the quantisation condition for the spectrum. This allows us to find the non-perturbative spectrum numerically.


Author(s):  
Johannes M. Henn

Tremendous ongoing theory efforts are dedicated to developing new methods for quantum chromodynamics (QCD) calculations. Qualitative rather than incremental advances are needed to fully exploit data that are still to be collected at the LHC. The maximally supersymmetric Yang–Mills theory, 𝒩=4 super Yang–Mills (sYM), shares with QCD the gluon sector, which contains the most complicated Feynman graphs but also has many special properties and is believed to be solvable exactly. It is natural to ask what we can learn from advances in 𝒩=4 sYM for addressing difficult problems in QCD. With this in mind, I review several remarkable developments and highlights of recent results in 𝒩=4 sYM. This includes all-order results for certain scattering amplitudes, novel symmetries, surprising geometrical structures of loop integrands, novel tools for the calculation of Feynman integrals, and bootstrap methods. While several insights and tools have already been carried over to QCD and have contributed to state-of-the-art calculations for LHC physics, I argue that there is a host of further fascinating ideas waiting to be explored. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 71 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
pp. 76-94
Author(s):  
Adrian Tanasa

We have seen in the previous chapter some of the non-trivial interplay between analytic combinatorics and QFT. In this chapter, we illustrate how yet another branch of combinatorics, algebraic combinatorics, interferes with QFT. In this chapter, after a brief algebraic reminder in the first section, we introduce in the second section the Connes–Kreimer Hopf algebra of Feynman graphs and we show its relation with the combinatorics of QFT perturbative renormalization. We then study the algebra's Hochschild cohomology in relation with the combinatorial Dyson–Schwinger equation in QFT. In the fourth section we present a Hopf algebraic description of the so-called multi-scale renormalization (the multi-scale approach to the perturbative renormalization being the starting point for the constructive renormalization programme).


2021 ◽  
pp. 166-177
Author(s):  
Adrian Tanasa

After a brief presentation of random matrices as a random surface QFT approach to 2D quantum gravity, we focus on two crucial mathematical physics results: the implementation of the large N limit (N being here the size of the matrix) and of the double-scaling mechanism for matrix models. It is worth emphasizing that, in the large N limit, it is the planar surfaces which dominate. In the third section of the chapter we introduce tensor models, seen as a natural generalization, in dimension higher than two, of matrix models. The last section of the chapter presents a potential generalisation of the Bollobás–Riordan polynomial for tensor graphs (which are the Feynman graphs of the perturbative expansion of QFT tensor models).


2021 ◽  
pp. 260-290
Author(s):  
Adrian Tanasa

In this chapter, we first review the Sachdev–Ye–Kitaev (SYK) model, which is a quantum mechanical model of N fermions. The model is a quenched model, which means that the coupling constant is a random tensor with Gaussian distribution. The SYK model is dominated in the large N limit by melonic graphs, in the same way the tensor models presented in the previous three chapters are dominated by melonic graphs. We then present a purely graph theoretical proof of the melonic dominance of the SYK model. It is this property which led E. Witten to relate the SYK model to the coloured tensor model. In the rest of the chapter we deal with the so-called coloured SYK model, which is a particular case of the generalisation of the SYK model introduced by D. Gross and V. Rosenhaus. We first analyse in detail the leading order and next-to-leading order vacuum, two- and four-point Feynman graphs of this model. We then exhibit a thorough asymptotic combinatorial analysis of the Feynman graphs at an arbitrary order in the large N expansion. We end the chapter by an analysis of the effect of non-Gaussian distribution for the coupling of the model.


2021 ◽  
pp. 39-49
Author(s):  
Adrian Tanasa

In this chapter we define specific tree weights which appear natural when considering a certain approach to non-perturbative renormalization in QFT, namely the constructive renormalization. Several examples of such tree weights are explicitly given in Appendix A. A fundamental step in QFT is to compute the logarithm of functional integrals used to define the partition function of a given model This comes from a fundamental theorem of enumerative combinatorics, stating the logarithm counts the connected objects. The main advantage of the perturbative expansion of a QFT into a sum of Feynman amplitudes is to perform this computation explicitly: the logarithm of the functional integral is the sum of Feynman amplitudes restricted to connected graphs. The main disadvantage is that the perturbative series indexed by Feynman graphs typically diverges.


Sign in / Sign up

Export Citation Format

Share Document