diamondback terrapin
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 18)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 20 (2) ◽  
Author(s):  
Eric Suarez ◽  
Travis M. Thomas ◽  
William M. Turner ◽  
Ryan L. Gandy ◽  
Kevin M. Enge ◽  
...  

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11815
Author(s):  
Robert E. Isdell ◽  
Donna Marie Bilkovic ◽  
Amanda G. Guthrie ◽  
Molly M. Mitchell ◽  
Randolph M. Chambers ◽  
...  

Nature-based shoreline protection provides a welcome class of adaptations to promote ecological resilience in the face of climate change. Along coastlines, living shorelines are among the preferred adaptation strategies to both reduce erosion and provide ecological functions. As an alternative to shoreline armoring, living shorelines are viewed favorably among coastal managers and some private property owners, but they have yet to undergo a thorough examination of how their levels of ecosystem functions compare to their closest natural counterpart: fringing marshes. Here, we provide a synthesis of results from a multi-year, large-spatial-scale study in which we compared numerous ecological metrics (including habitat provision for fish, invertebrates, diamondback terrapin, and birds, nutrient and carbon storage, and plant productivity) measured in thirteen pairs of living shorelines and natural fringing marshes throughout coastal Virginia, USA. Living shorelines were composed of marshes created by bank grading, placement of sand fill for proper elevations, and planting of S. alterniflora and S. patens, as well as placement of a stone sill seaward and parallel to the marsh to serve as a wave break. Overall, we found that living shorelines were functionally equivalent to natural marshes in nearly all measured aspects, except for a lag in soil composition due to construction of living shoreline marshes with clean, low-organic sands. These data support the prioritization of living shorelines as a coastal adaptation strategy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Margaret M. Lamont ◽  
Darren Johnson ◽  
Daniel J. Catizone

AbstractNatural disturbances are an important driver of population dynamics. Because it is difficult to observe wildlife during these events, our understanding of the strategies that species use to survive these disturbances is limited. On October 10, 2018, Hurricane Michael made landfall on Florida’s northwest coast. Using satellite and acoustic telemetry, we documented movements of 6 individual turtles: one loggerhead sea turtle, one Kemp’s ridley sea turtle, three green sea turtles and one diamondback terrapin, in a coastal bay located less than 30 km from hurricane landfall. Post-storm survival was confirmed for all but the Kemp’s ridley; the final condition of that individual remains unknown. No obvious movements were observed for the remaining turtles however the loggerhead used a larger home range in the week after the storm. This study highlights the resiliency of turtles in response to extreme weather conditions. However, long-term impacts to these species from habitat changes post-hurricane are unknown.


Diversity ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 409
Author(s):  
Lisa Prowant ◽  
Russell L. Burke

Reliable estimates of animal and plant population sizes are necessary to track trends in populations through time. Diamondback terrapins are an ecologically unique keystone species that are globally declining. Conservation efforts for this species rely on accurate estimates of population sizes; however, diamondback terrapin population size estimates are difficult to measure with precision or accuracy. Terrapin collection methods are often labor-, time-, and cost-intensive. The present study compares two recently developed rapid assessment methods for measuring diamondback terrapin abundances. Since mark–recapture or similar data were unavailable, we could not test the accuracy of either method directly; instead, we compared the two methods. If the methods produce similar estimates of terrapin population size, this would increase confidence in these methods. We measured the abundance of diamondback terrapins at 77 sites in Long Island, New York, using headcount surveys and surveys of parasitic trematodes that can be used as a proxy for terrapin abundance. We used random forest analyses to test whether the variation in diamondback terrapin abundance measured using headcount surveys could be explained by either the prevalence or the abundance of trematode parasites. The most variation explained by any of the models was 7.77%, indicating that trematode prevalence and abundance could not explain the variation in terrapin abundance measured using headcounts. This poor correlation between terrapin census methods indicates that one, or both, of the census measures are inaccurate, at least in the habitats found across Long Island, NY. A technique that accurately estimates the abundance of diamondback terrapin populations is critical to understanding their population fluctuations and trends. The only way to evaluate the status of the species is to have information on population numbers and trends across the species’ range, which might not be possible without a more accessible survey method.


Diversity ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 151
Author(s):  
Rebecca A. Czaja ◽  
Amanda L. Scholz ◽  
Miranda P. Figueras ◽  
Russell L. Burke

Climate change is likely to have strong impacts on oviparous animals with minimal parental care, because nest temperature can impact egg development, sex, and survival, especially in the absence of mitigation via parental care. Nesting females may compensate for increasing temperatures by altering how, when, and where they nest. We examined the factors determining nest depth and site choice as well as the effects that nest depth and location have on nest temperature and hatching success in the diamondback terrapin (Malaclemys terrapin). We found that nest depth was not correlated with nesting female size, egg characteristics, or daily temperatures. Nest temperatures and hatching success were correlated with different environmental and nest characteristics between 2004, a cool and wet year, and 2005, a hot and dry year. Females selected nests with lower southern overstory vegetation in 2005. These results suggest that nest depth and location can play an important yet varying role in determining nest temperature and hatching success in more extreme warm and dry environmental conditions and, therefore, may mitigate the impacts of climate change on oviparous reptiles. However, we found minimal evidence that turtles choose nest locations and depths that maximize offspring survival based on short-term environmental cues.


Sign in / Sign up

Export Citation Format

Share Document