cell mortality
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 37)

H-INDEX

20
(FIVE YEARS 4)

Author(s):  
Sharareh Shamloo ◽  
◽  
Sayeh Jafari Marandi ◽  
Golnaz Tajadod ◽  
Ahmad Majd ◽  
...  

Cota tinctoria is a medicinal plant which has been used for management of cancer in folk medicine of various regions. The aim of present study is to investigate cytotoxic activity of different concentrations of hydroalcoholic extract of C. tinctoria flowers on gastric (AGS) and liver (Hep-G2) cancer cell lines as well as Human Natural GUM fibroblast (HUGU) cells. Cell mortality rates were examined after 24, 48 and 72 h incubations using the MTT assay. IC50 of extract on AGS cells after 24, 48 and 72h was 1.46, 1.29 and 1.14 µg/mL respectively. The extract demonstrated IC50 of 5.15, 3.92 and 2.89 µg/mL on Hep-G2 cells after 24, 48 and 72 h respectively. No cytotoxic effect was detected on HUGU (Human Natural GUM fibroblast) cells. C. tinctoria seems to have a promising potential to be considered as a source for anticancer drug discovery. However, more experimental and clinical studies are required.


2021 ◽  
pp. 088532822110515
Author(s):  
Guangfei Li ◽  
Yanbo Yin ◽  
Yaopeng Zhang ◽  
Jingfang Wu ◽  
Shan Sun

Objective We sought to determine the biocompatibility of electrospun regenerated silk fibroin (RSF) mats with inner ear progenitors, especially their effect on the differentiation of inner ear progenitors into hair cells. Methods Neonatal mouse cochleae (n = 20) were collected and digested and allowed to form spheres over several days. Cells digested from the spheres were then seeded onto aligned or random RSF mats, with laminin-coated coverslips serving as controls. The inner ear progenitor cell mortality was examined by TUNEL labeling, and the adhesion of cells to the RSF mats or coverslip was determined by scanning electron microscopy. Finally, the number of hair cells that differentiated from inner ear progenitors was determined by Myosin7a expression. Unpaired Student’s t-tests and one-way ANOVA followed by a Dunnett’s multiple comparisons test were used in this study ( p < 0.05). Results After 5 days of culture, the inner ear progenitors had good adhesion to both the aligned and random RSF mats and there was no significant difference in TUNEL+ cells between the mats compared to the coverslip ( p > 0.05). After 7 days of in vitro differentiation culture, the percentage of differentiated hair cells on the control, aligned, and random RSF mats was 2.5 ± 0.5%, 2.7 ± 0.4%, and 2.4 ± 0.2%, respectively, and there was no significant difference between Myosin7a+ cells on either RSF mat compared to controls ( p > 0.05). Conclusion The aligned and random RSF mats had excellent biocompatibility with inner ear progenitors and helped the inner ear progenitors maintain their stemness. Our results thus indicate that RSF mats represent a useful scaffold for the development of new strategies for inner ear tissue engineering research.


2021 ◽  
Author(s):  
Daniel Jonathan Sher ◽  
Dikla Aharonovich ◽  
Osnat Weissberg

Interactions among microorganisms are ubiquitous, yet to what extent strain-level diversity affects interactions is unclear. Phototroph-heterotroph interactions in marine environments have been studied intensively, due to their potential impact on ocean ecosystems and biogeochemistry. Here, we characterize the interactions between five strains each of two globally abundant marine bacteria, Prochlorococcus (a phototroph) and Alteromonas (a heterotroph), from the first encounter between individual strains and over more than a year of subsequent co-culturing. Prochlorococcus-Alteromonas interactions affected primarily the dynamics of culture decline, which we interpret as representing cell mortality and lysis. The shape of the decline curve and the carrying capacity of the co-cultures were determined by the phototroph and not the heterotroph strains involved. Comparing various models of culture mortality suggests that death rate increases over time in mono-cultures but decreases in co-cultures, with cells potentially becoming more resistant to stress. During 435 days of co-culture, mutations accumulated in one Prochlorococcus strain (MIT9313) in genes involved in nitrogen metabolism and the stringent response, indicating that these processes occur during long-term nitrogen starvation. Our results suggest potential mechanisms involved in long-term starvation survival in co-culture, and highlight the information-rich growth and death curves as a useful readout of the interaction phenotype.


2021 ◽  
Vol 31 (3) ◽  
pp. 547-554
Author(s):  
Carmen Alexandra NECULACHI ◽  
◽  
Livia Ioana LETI ◽  
Alexandrina BURLACU ◽  
Mihai Bogdan PREDA ◽  
...  

Mesenchymal stromal cells (MSC) are nonhematopoietic cells with fi broblast-like morphology and multipotent capacity that are widely used in pre-clinical and clinical investigations. Unfortunately, the efficiency of MSC treatment is hindered by the poor survival rate after transplantation at the damaged tissue. The goal of this study was to investigate the fate of MSC exposed to various stimuli mimicking the in vivo microenvironment post transplantation. To this aim, murine bone marrow–derived MSC were stimulated with IFNgama and TNFalfa under low oxygen (hypoxia) or atmospheric (normoxia) conditions for 24 to 72 hours, in order to better mimic an ischemic injury. The results showed that MSC pre-stimulation with TNFalfa and IFNgama enhanced immunosuppressive pathways by over-expression of NOS2, IDO, COX2 and production of NO. However, MSC viability was affected by these two cytokines in dose-dependent and time-dependent manners. Besides, priming with TNFalfa and/or IFNgama under low oxygen concentrations revealed that significantly increased cell mortality rate and decreased NO production. Our data suggest that both hypoxia and infl ammation could impact the cell survival after transplantation and reinforces the necessity of further investigations to better understand MSC behavior after transplantation in order to identify the MSC-based strategies with the highest therapeutic potential.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5566
Author(s):  
Abdulmomem Awwad ◽  
Patrick Poucheret ◽  
Yanis A. Idres ◽  
Damien S. T. Tshibangu ◽  
Adrien Servent ◽  
...  

Plant bioactive extracts represent a major resource for identifying drugs and adjuvant therapy for type 2 diabetes. To promote early screening of plants’ antidiabetic potential, we designed a four in vitro tests strategy to anticipate in vivo bioactivity. Two antidiabetic plants were studied: Ocimum gratissimum L. (Oc) leaf extract and Musanga cecropoides R. Br. ex Tedlie (Mu) stem bark extract. Chemical compositions were analyzed by LCMS and HPLC. Antidiabetic properties were measured based on (1) INS-1 cells for insulin secretion, (2) L6 myoblast cells for insulin sensitization (Glut-4 translocation), (3) L6 myoblast cells for protection against hydrogen peroxide (H2O2) oxidative stress (cell mortality), and (4) liver microsomial fraction for glucose-6-phosphastase activity (G6P). Oc extract increased insulin secretion and insulin sensitivity, whereas it decreased oxidative stress-induced cell mortality and G6P activity. Mu extract decreased insulin secretion and had no effect on insulin sensitivity or G6P activity, but it increased oxidative stress-induced cell mortality. Results were compared with NCRAE, an antidiabetic plant extract used as reference, previously characterized and reported with increased insulin secretion and insulin sensitivity, protection against oxidative stress, and decreased G6P activity. The proposed set of four in vitro tests combined with chemical analysis provided insight into the interest in rapid early screening of plant extract antidiabetic potential to anticipate pharmaco-toxicological in vivo effects.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 556
Author(s):  
Anaïs Draguet ◽  
Vanessa Tagliatti ◽  
Jean-Marie Colet

Characteristic metabolic adaptations are recognized as a cancer hallmark. Breast cancer, like other cancer types, displays cellular respiratory switches—in particular, the Warburg effect—and important fluctuations in the glutamine and choline metabolisms. This cancer remains a world health issue mainly due to the side effects associated with chemotherapy, which force a reduction in the administered dose or even a complete discontinuation of the treatment. For example, Doxorubicin is efficient to treat breast cancer but unfortunately induces severe cardiotoxicity. In the present in vitro study, selected metabolic inhibitors were evaluated alone or in combination as potential treatments against breast cancer. In addition, the same inhibitors were used to possibly potentiate the effects of Doxorubicin. As a result, the combination of CB-839 (glutaminase inhibitor) and Oxamate (lactate dehydrogenase inhibitor) and the combination of CB-839/Oxamate/D609 (a phosphatidylcholine-specific phospholipase C inhibitor) caused significant cell mortality in both MDA-MB-231 and MCF-7, two breast cancer cell lines. Furthermore, all inhibitors were able to improve the efficacy of Doxorubicin on the same cell lines. Those findings are quite encouraging with respect to the clinical goal of reducing the exposure of patients to Doxorubicin and, subsequently, the severity of the associated cardiotoxicity, while keeping the same treatment efficacy.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4090
Author(s):  
Michael A. Firer ◽  
Michael Y. Shapira ◽  
Galia Luboshits

Current standard frontline therapy for newly diagnosed patients with multiple myeloma (NDMM) involves induction therapy, autologous stem cell transplantation (ASCT), and maintenance therapy. Major efforts are underway to understand the biological and the clinical impacts of each stage of the treatment protocols on overall survival statistics. The most routinely used drugs in the pre-ASCT “induction” regime have different mechanisms of action and are employed either as monotherapies or in various combinations. Aside from their direct effects on cancer cell mortality, these drugs are also known to have varying effects on immune cell functionality. The question remains as to how induction therapy impacts post-ASCT immune reconstitution and anti-tumor immune responses. This review provides an update on the known immune effects of melphalan, dexamethasone, lenalidomide, and bortezomib commonly used in the induction phase of MM therapy. By analyzing the actions of each individual drug on the immune system, we suggest it might be possible to leverage their effects to rationally devise more effective induction regimes. Given the genetic heterogeneity between myeloma patients, it may also be possible to identify subgroups of patients for whom particular induction drug combinations would be more appropriate.


2021 ◽  
Vol 11 (15) ◽  
pp. 7060
Author(s):  
Antonia Mancuso ◽  
Maria Chiara Cristiano ◽  
Massimo Fresta ◽  
Daniele Torella ◽  
Donatella Paolino

Ethosomes® are one of the main deformable vesicles proposed to overcome the stratum corneum. They are composed of lecithin, ethanol and water, resulting in round vesicles characterized by a narrow size distribution and a negative surface charge. Taking into account their efficiency to deliver drugs into deeper skin layers, the current study was designed to evaluate the influence of different lipids on the physico-chemical features of traditional ethosomes in the attempt to influence their fate. Three lipids (DOPE, DSPE and DOTAP) were used for the study, but only DOTAP conferred a net positive charge to ethosomes, maintaining a narrow mean size lower than 300 nm and a good polydispersity index. Stability and in vitro cytotoxic studies have been performed using Turbiscan Lab analysis and MTT dye exclusion assay, respectively. Data recorded demonstrated the good stability of modified ethosomes and a reasonable absence of cell mortality when applied to human keratinocytes, NCTC 2544, which are used as a cell model. Finally, the best formulations were selected to evaluate their ability to encapsulate drugs, through the use of model compounds. Cationic ethosomes encapsulated oil red o and rhodamine b in amounts comparable to those recorded from conventional ethosomes (over 50%). Results recorded from this study are encouraging as cationic ethosomes may open new opportunities for skin delivery.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3215
Author(s):  
Roman G. Szafran ◽  
Kazimierz Gąsiorowski ◽  
Benita Wiatrak

To study the simultaneous effect of the molecular gradient of polyphenols (curcumin, trans-resveratrol, and wogonin) and biological factors released from tumor cells on apoptosis of adjacent cells, a novel microfluidic system was designed and manufactured. The small height/volume of microfluidic culture chambers and static conditions allowed for establishing the local microenvironment and maintaining undisturbed concentration profiles of naturally secreted from cells biochemical factors. In all trials, we observe that these conditions significantly affect cell viability by stimulating cell apoptosis at lower concentrations of polyphenols than in traditional multiwell cultures. The observed difference varied between 20.4–87.8% for curcumin, 11.0–37.5% for resveratrol, and 21.7–62.2% for wogonin. At low concentrations of polyphenols, the proapoptotic substances released from adjacent cells, like protein degradation products, significantly influence cell viability. The mean increase in cell mortality was 38.3% for microfluidic cultures. Our research has also confirmed that the gradient microsystem is useful in routine laboratory tests in the same way as a multiwell plate and may be treated as its replacement in the future. We elaborated the new repetitive procedures for cell culture and tests in static gradient conditions, which may become a gold standard of new drug investigations in the future.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1382
Author(s):  
Mohsen S. Al-Omar ◽  
Majid Jabir ◽  
Esraa Karsh ◽  
Rua Kadhim ◽  
Ghassan M. Sulaiman ◽  
...  

The study aimed to investigate the roles of gold nanoparticles (GNPs) and graphene oxide flakes (GOFs) as phagocytosis enhancers against cancer cells. The nanomaterials were characterized through SEM and UV-VIS absorptions. The GNPs and GOFs increased the macrophages’ phagocytosis ability in engulfing, thereby annihilating the cancer cells in both in vitro and in vivo conditions. The GNPs and GOFs augmented serine protease class apoptotic protein, granzyme, passing through the aquaporin class protein, perforin, with mediated delivery through the cell membrane site for the programmed, calibrated, and conditioned cancer cells killing. Additionally, protease inhibitor 3,4-dichloroisocoumarin (DCI) significantly reduced granzyme and perforin activities of macrophages. The results demonstrated that the GOFs and GNPs increased the activation of phagocytic cells as a promising strategy for controlling cancer cells by augmenting the cell mortality through the granzyme-perforin-dependent mechanism.


Sign in / Sign up

Export Citation Format

Share Document