disulphide bond formation
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 3)

H-INDEX

22
(FIVE YEARS 1)

2020 ◽  
Vol 367 (23) ◽  
Author(s):  
Alexander Zhyvoloup ◽  
Bess Yi Kun Yu ◽  
Jovana Baković ◽  
Mathew Davis-Lunn ◽  
Maria-Armineh Tossounian ◽  
...  

ABSTRACT Spores of Bacillus species have novel properties, which allow them to lie dormant for years and then germinate under favourable conditions. In the current work, the role of a key metabolic integrator, coenzyme A (CoA), in redox regulation of growing cells and during spore formation in Bacillus megaterium and Bacillus subtilis is studied. Exposing these growing cells to oxidising agents or carbon deprivation resulted in extensive covalent protein modification by CoA (termed protein CoAlation), through disulphide bond formation between the CoA thiol group and a protein cysteine. Significant protein CoAlation was observed during sporulation of B. megaterium, and increased largely in parallel with loss of metabolism in spores. Mass spectrometric analysis identified four CoAlated proteins in B. subtilis spores as well as one CoAlated protein in growing B. megaterium cells. All five of these proteins have been identified as moderately abundant in spores. Based on these findings and published studies, protein CoAlation might be involved in facilitating establishment of spores’ metabolic dormancy, and/or protecting sensitive sulfhydryl groups of spore enzymes.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Balaji Ramachandran ◽  
Vignesh Muthuvijayan

Abstract Nitric oxide (NO) is an important signalling molecule involved in haemostasis. NO, present as endogenous S-nitrosothiols, is released by cysteine through a transnitrosation reaction. To exploit this mechanism, cysteine was immobilised onto the different carboxylated polyethylene terephthalate (PET) surfaces using 1-step EDC (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide) crosslinking mechanism. Immobilised cysteine concentration and NO release were dependent on the surface carboxyl density. Stability studies showed that the immobilised cysteine concentration and NO release reduced within 6 h. Immobilisation of cysteine derivatives eliminated the possibility of formation of polycysteine and its electrostatic interaction with the carboxylated PET. The immobilised cysteine concentration did not recover after DTT treatment, eliminating the possibility of disulphide bond formation. Further, cysteine was immobilised using a 2-step EDC crosslinking mechanism. Although the cysteine concentration reduced during stability studies, it recovered upon DTT treatment, indicating that cysteine forms amide bonds with the carboxylated PET and the observed decrease in cysteine concentration is probably due to the formation of disulphide bonds. The haemocompatibility of the cysteine immobilised PET surfaces showed similar results compared to the carboxylated PET. The loss of thiol groups due to the disulphide bond restricts the transnitrosation reaction. Hence, these materials can be used primarily in short-term applications.


Rheumatology ◽  
2019 ◽  
Vol 59 (6) ◽  
pp. 1241-1246 ◽  
Author(s):  
Adrianos Nezos ◽  
Ourania D Argyropoulou ◽  
Eleni Klinaki ◽  
Nikolaos Marketos ◽  
Panagiota Karagianni ◽  
...  

Abstract Objective Tumor necrosis factor receptor-associated periodic syndrome (TRAPS) is a rare autosomal dominantly inherited autoinflammatory disease caused by mutations of the TNFRSF1A gene. To address the association between TNFRSF1A mutations and clinical phenotype, we analyzed four pedigrees of TRAPS patients. Methods Four Greek patients with TRAPS-like clinical features were screened for TNFRSF1A mutations by sequencing exons 2, 3 and 4. Following positive testing, twenty-two members of their families were also genetically and clinically screened. Results Twenty-six members of four unrelated Greek families were investigated. The C73Y (c.305G>A) mutation of the TNFRSF1A gene was identified in five patients, with two of the five carrying a concomitant R92Q variation. We also identified seven C73W (c.306C>G), two T50M (c.236C>T) and seven R92Q (c.362G>A) carriers. Symptoms varied and the C73Y, C73W and T50M mutations were associated with the most severe clinical manifestations. The R92Q phenotype ranged from asymptomatic to mild disease. Molecular modelling linked pathogenicity with aberrant TNFRSF1A disulphide bond formation. Conclusion In this first pedigree analysis of TRAPS in Greece, we identified the rare C73Y TNFRSF1A mutation. A wide clinical spectrum was observed with the C73Y, C73W and T50M mutations that affect TNFRSF1A disulphide bonds and are associated with worse symptoms.


2017 ◽  
Vol 474 (2) ◽  
pp. 317-331 ◽  
Author(s):  
Nidhi Kundu ◽  
Swapnil Tichkule ◽  
Shashi Bhushan Pandit ◽  
Kausik Chattopadhyay

Pore-forming toxins (PFTs) are typically produced as water-soluble monomers, which upon interacting with target cells assemble into transmembrane oligomeric pores. Vibrio parahaemolyticus thermostable direct hemolysin (TDH) is an atypical PFT that exists as a tetramer in solution, prior to membrane binding. The TDH structure highlights a core β-sandwich domain similar to those found in the eukaryotic actinoporin family of PFTs. However, the TDH structure harbors an extended C-terminal region (CTR) that is not documented in the actinoporins. This CTR remains tethered to the β-sandwich domain through an intra-molecular disulphide bond. Part of the CTR is positioned at the inter-protomer interface in the TDH tetramer. Here we show that the truncation, as well as mutation, of the CTR compromise tetrameric assembly, and the membrane-damaging activity of TDH. Our study also reveals that intra-protomer disulphide bond formation during the folding/assembly process of TDH restrains the CTR to mediate its participation in the formation of inter-protomer contact, thus facilitating TDH oligomerization. However, once tetramerization is achieved, disruption of the disulphide bond does not affect oligomeric assembly. Our study provides critical insights regarding the regulation of the oligomerization mechanism of TDH, which has not been previously documented in the PFT family.


2016 ◽  
Author(s):  
Eduardo Pinho Melo ◽  
Carlos Lopes ◽  
Peter Gollwitzer ◽  
Stephan Lortz ◽  
Sigurd Lenzen ◽  
...  

AbstractThe fate of H2O2 in the endoplasmic reticulum (ER) has been inferred indirectly from the activity of ER localized thiol oxidases and peroxiredoxins, in vitro, and the consequences of their genetic manipulation, in vivo. Here we report on the development of TriPer, a vital optical probe sensitive to changes in the concentration of H2O2 in the thiol-oxidizing environment of the ER. Consistent with the hypothesized contribution of oxidative protein folding to H2O2 production, ER-localized TriPer detected an increase in the luminal H2O2 signal upon induction of pro-insulin (a disulfide bonded protein of pancreatic β-cells), which was attenuated by the ectopic expression of catalase in the ER lumen. Interfering with glutathione production in the cytosol by buthionine sulfoximine (BSO) or enhancing its localized destruction by expression of the glutathione-degrading enzyme ChaC1 in lumen of the ER, enhanced further the luminal H2O2 signal and eroded β-cell viability. Tracking ER H2O2 in live cells points to an unanticipated role for glutathione in H2O2 turnover.Significance statementThe presence of millimolar glutathione in the lumen of the endoplasmic reticulum has been difficult to understand purely in terms of modulation of protein-based disulphide bond formation in secreted proteins. Over the years hints have suggested that glutathione might have a role in reducing the heavy burden of hydrogen peroxide (H2O2) produced by the luminal enzymatic machinery for disulphide bond formation. However, limitations in existing in vivo H2O2 probes have rendered them all but useless in the thiol-oxidizing ER, precluding experimental follow-up of glutathione’s role ER H2O2 metabolism.Here we report on the development and mechanistic characterization of an optical probe, TriPer that circumvents the limitations of previous sensors by retaining specific responsiveness to H2O2 in thiol-oxidizing environments. Application of this tool to the ER of an insulin-producing pancreatic b-cells model system revealed that ER glutathione antagonizes locally-produced H2O2 resulting from the oxidative folding of pro-insulin.This study presents an interdisciplinary effort intersecting cell biology and chemistry: An original redox chemistry concept leading to development of a biological tool, broadly applicable for in vivo studies of H2O2 metabolism in the ER. More broadly, the concept developed here sets a precedent for applying a tri-cysteine relay system to discrimination between various oxidative reactants, in complex redox milieux.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Mária Budai-Szűcs ◽  
Gabriella Horvát ◽  
Barnabás Áron Szilágyi ◽  
Benjámin Gyarmati ◽  
András Szilágyi ◽  
...  

Dry eye disease is a relatively common ocular problem, which causes eye discomfort and visual disorders leading to a decrease in the quality of life. The aim of this study was to find a possible excipient for eye drop formulations, which is able to stabilize the tear film. A cationic thiolated polyaspartamide polymer, poly[(N-mercaptoethylaspartamide)-co-(N-(N′,N′-dimethylaminoethyl)aspartamide)] (ThioPASP-DME), was used as a potential vehicle. Besides satisfying the basic requirements, the chemical structure of ThioPASP-DME is similar to those of ocular mucins as it is a protein-like polymer bearing a considerable number of thiol groups. The solution of the polymer is therefore able to mimic the physiological properties of the mucins and it can interact with the mucus layer via disulphide bond formation. The resultant mucoadhesion provides a prolonged residence time and ensures protective effect for the corneal/conjunctival epithelium. ThioPASP-DME also has an antioxidant effect due to the presence of the thiol groups. The applicability of ThioPASP-DME as a potential excipient in eye drops was determined by means of ocular compatibility tests and through examinations of the interactions with the mucosal surface. The results indicate that ThioPASP-DME can serve as a potential eye drop excipient for the therapy of dry eye disease.


2013 ◽  
Vol 91 (3) ◽  
pp. 522-537 ◽  
Author(s):  
Stefan P. W. de Vries ◽  
Rob J. A. Rademakers ◽  
Christa E. van der Gaast-de Jongh ◽  
Marc J. Eleveld ◽  
Peter W. M. Hermans ◽  
...  

2012 ◽  
Vol 85 (5) ◽  
pp. 996-1006 ◽  
Author(s):  
Shu-Sin Chng ◽  
Rachel J. Dutton ◽  
Katleen Denoncin ◽  
Didier Vertommen ◽  
Jean-Francois Collet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document