oligomeric assembly
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 15)

H-INDEX

21
(FIVE YEARS 2)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Hongki Song ◽  
Thomas L Torng ◽  
Amy S Orr ◽  
Axel T Brunger ◽  
William T Wickner

Membrane fusion requires R-, Qa-, Qb-, and Qc-family SNAREs that zipper into RQaQbQc coiled coils, driven by the sequestration of apolar amino acids. Zippering has been thought to provide all the force driving fusion. Sec17/aSNAP can form an oligomeric assembly with SNAREs with the Sec17 C-terminus bound to Sec18/NSF, the central region bound to SNAREs, and a crucial apolar loop near the N-terminus poised to insert into membranes. We now report that Sec17 and Sec18 will drive robust fusion without requiring zippering completion. Zippering-driven fusion is blocked by deleting the C-terminal quarter of any Q-SNARE domain or by replacing the apolar amino acids of the Qa-SNARE which face the center of the 4-SNARE coiled coils with polar residues. These blocks, singly or combined, are bypassed by Sec17 and Sec18, and SNARE-dependent fusion is restored without help from completing zippering.


2021 ◽  
Vol 22 (6) ◽  
pp. 2926
Author(s):  
Dinendra L. Abeyawardhane ◽  
Raquel Godoy-Ruiz ◽  
Kaylin A. Adipietro ◽  
Kristen M. Varney ◽  
Richard R. Rustandi ◽  
...  

Novel therapeutics are needed to treat pathologies associated with the Clostridioides difficile binary toxin (CDT), particularly when C. difficile infection (CDI) occurs in the elderly or in hospitalized patients having illnesses, in addition to CDI, such as cancer. While therapies are available to block toxicities associated with the large clostridial toxins (TcdA and TcdB) in this nosocomial disease, nothing is available yet to treat toxicities arising from strains of CDI having the binary toxin. Like other binary toxins, the active CDTa catalytic subunit of CDT is delivered into host cells together with an oligomeric assembly of CDTb subunits via host cell receptor-mediated endocytosis. Once CDT arrives in the host cell’s cytoplasm, CDTa catalyzes the ADP-ribosylation of G-actin leading to degradation of the cytoskeleton and rapid cell death. Although a detailed molecular mechanism for CDT entry and host cell toxicity is not yet fully established, structural and functional resemblances to other binary toxins are described. Additionally, unique conformational assemblies of individual CDT components are highlighted herein to refine our mechanistic understanding of this deadly toxin as is needed to develop effective new therapeutic strategies for treating some of the most hypervirulent and lethal strains of CDT-containing strains of CDI.


2021 ◽  
Vol 118 (11) ◽  
pp. e2025022118
Author(s):  
Yuki Toyama ◽  
Robert W. Harkness ◽  
Tim Y. T. Lee ◽  
Jason T. Maynes ◽  
Lewis E. Kay

Human High temperature requirement A2 (HtrA2) is a mitochondrial protease chaperone that plays an important role in cellular proteostasis and in regulating cell-signaling events, with aberrant HtrA2 function leading to neurodegeneration and parkinsonian phenotypes. Structural studies of the enzyme have established a trimeric architecture, comprising three identical protomers in which the active sites of each protease domain are sequestered to form a catalytically inactive complex. The mechanism by which enzyme function is regulated is not well understood. Using methyl transverse relaxation optimized spectroscopy (TROSY)-based solution NMR in concert with biochemical assays, a functional HtrA2 oligomerization/binding cycle has been established. In the absence of substrates, HtrA2 exchanges between a heretofore unobserved hexameric conformation and the canonical trimeric structure, with the hexamer showing much weaker affinity toward substrates. Both structures are substrate inaccessible, explaining their low basal activity in the absence of the binding of activator peptide. The binding of the activator peptide to each of the protomers of the trimer occurs with positive cooperativity and induces intrasubunit domain reorientations to expose the catalytic center, leading to increased proteolytic activity. Our data paint a picture of HtrA2 as a finely tuned, stress-protective enzyme whose activity can be modulated both by oligomerization and domain reorientation, with basal levels of catalysis kept low to avoid proteolysis of nontarget proteins.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Fateme Khomari ◽  
Mohsen Nabi-Afjadi ◽  
Sahar Yarahmadi ◽  
Hanie Eskandari ◽  
Elham Bahreini

AbstractThe proteostasis network includes all the factors that control the function of proteins in their native state and minimize their non-functional or harmful reactions. The molecular chaperones, the important mediator in the proteostasis network can be considered as any protein that contributes to proper folding and assembly of other macromolecules, through maturating of unfolded or partially folded macromolecules, refolding of stress-denatured proteins, and modifying oligomeric assembly, otherwise it leads to their proteolytic degradation. Viruses that use the hosts’ gene expression tools and protein synthesis apparatus to survive and replicate, are obviously protected by such a host chaperone system. This means that many viruses use members of the hosts’ chaperoning system to infect the target cells, replicate, and spread. During viral infection, increase in endoplasmic reticulum (ER) stress due to high expression of viral proteins enhances the level of heat shock proteins (HSPs) and induces cell apoptosis or necrosis. Indeed, evidence suggests that ER stress and the induction of unfolded protein response (UPR) may be a major aspect of the corona-host virus interaction. In addition, several clinical reports have confirmed the autoimmune phenomena in COVID-19-patients, and a strong association between this autoimmunity and severe SARS-CoV-2 infection. Part of such autoimmunity is due to shared epitopes among the virus and host. This article reviews the proteostasis network and its relationship to the immune system in SARS-CoV-2 infection.


2021 ◽  
Author(s):  
Hongki Song ◽  
Thomas Torng ◽  
Amy Orr ◽  
Axel T. Brunger ◽  
William Wickner

AbstractMembrane fusion requires R-, Qa-, Qb-, and Qc-family SNAREs that zipper into RQaQbQc coiled coils, driven by the sequestration of apolar amino acids. Zippering has been thought to provide all the force driving fusion. Sec17/SNAP can form an oligomeric assembly with SNAREs with the Sec17 C-terminus bound to Sec18/NSF, the central region bound to SNAREs, and a crucial apolar loop near the N-terminus poised to insert into membranes. Though Sec17 aids zippering, we now report that Sec17 and Sec18 will drive robust fusion without requiring zippering completion. Zippering-driven fusion is blocked by deleting the C-terminal quarter of any Q-SNARE domain or by replacing the apolar amino acids of the Qa-SNARE which face the center of the 4-SNARE coiled coils with polar residues. These blocks to fusion, singly or combined, are bypassed by Sec17 and Sec18, and SNARE-dependent fusion is restored without help from completing zippering.


Biochimie ◽  
2021 ◽  
Vol 181 ◽  
pp. 145-153
Author(s):  
Fábio F. Cardoso ◽  
Maximilia F. de Souza ◽  
Cristiano L.P. Oliveira ◽  
Marcos R.M. Fontes

2020 ◽  
pp. jbc.RA120.016451
Author(s):  
Benjamin S Gully ◽  
Hariprasad Venugopal ◽  
Alex J Fulcher ◽  
Zhihui Fu ◽  
Jessica Li ◽  
...  

DEC-205 (CD205), a member of the macrophage mannose receptor protein family, is the prototypic endocytic receptor of dendritic cells, whose ligands include phosphorothioated cytosine-guanosine (CpG) oligonucleotides, a motif often seen in bacterial or viral DNA. However, despite growing biological and clinical significance, little is known about the structural arrangement of this receptor or any of its family members. Here we describe the 3.2 Å cryo-EM structure of human DEC-205, thereby illuminating the structure of the mannose receptor protein family. The DEC-205 monomer forms a compact structure comprising two intercalated rings of C-type lectin-like domains, where the N-terminal cysteine-rich and fibronectin domains reside at the central intersection. We establish a pH dependant oligomerisation pathway forming tetrameric DEC-205 using solution-based techniques and ultimately solved the 4.9 Å cryo-EM structure of the DEC-205 tetramer to identify the unfurling of the second lectin ring which enables tetramer formation. Furthermore, we suggest the relevance of this oligomerisation pathway within a cellular setting, whereby CpG binding appeared to disrupt this cell-surface oligomer. Accordingly, we provide insight into the structure and oligomeric assembly of the DEC-205 receptor.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Dhanasekaran Sakthivel ◽  
Sarah Preston ◽  
Robin B. Gasser ◽  
Tatiana P. Soares da Costa ◽  
Julia N. Hernandez ◽  
...  

AbstractGalectins are a family of glycan-binding molecules with a characteristic affinity for ß-D-glycosides that mediate a variety of important cellular functions, including immune and inflammatory responses. Galectin-11 (LGALS-11) has been recently identified as a mediator induced specifically in animals against gastrointestinal nematodes and can interfere with parasite growth and development. Here, we report that at least two natural genetic variants of LGALS-11 exist in sheep, and demonstrate fundamental differences in anti-parasitic activity, correlated with their ability to dimerise. This study improves our understanding of the role of galectins in the host immune and inflammatory responses against parasitic nematodes and provides a basis for genetic studies toward selective breeding of animals for resistance to parasites.


2020 ◽  
Vol 6 (29) ◽  
pp. eaba8161
Author(s):  
Yue Ren ◽  
Tianlei Wen ◽  
Zhiqin Xi ◽  
Shunjin Li ◽  
Jing Lu ◽  
...  

Calcium homeostasis modulator 1 (CALHM1) is a voltage-gated ATP release channel that plays an important role in neural gustatory signaling and the pathogenesis of Alzheimer’s disease. Here, we present a cryo–electron microscopy structure of full-length Ca2+-free CALHM1 from Danio rerio at an overall resolution of 3.1 Å. Our structure reveals an octameric architecture with a wide pore diameter of ~20 Å, presumably representing the active conformation. The overall structure is substantially different from that of the isoform CALHM2, which forms both undecameric hemichannels and gap junctions. The N-terminal small helix folds back to the pore and forms an antiparallel interaction with transmembrane helix 1. Structural analysis revealed that the extracellular loop 1 region within the dimer interface may contribute to oligomeric assembly. A positive potential belt inside the pore was identified that may modulate ion permeation. Our structure offers insights into the assembly and gating mechanism of the CALHM1 channel.


Author(s):  
Kanae Demura ◽  
Tsukasa Kusakizako ◽  
Wataru Shihoya ◽  
Masahiro Hiraizumi ◽  
Kengo Nomura ◽  
...  

AbstractCalcium homeostasis modulator (CALHM) family proteins are Ca2+-regulated ATP-release channels involved in neural functions including neurotransmission in gustation. Here we present the cryo-EM structures of killifish CALHM1, human CALHM2, and C. elegans CLHM-1 at resolutions of 2.66, 3.51, and 3.60 Å, respectively. The CALHM1 octamer structure reveals that the N-terminal helix forms the constriction site at the channel pore in the open state, and modulates the ATP conductance. The CALHM2 undecamer and CLHM-1 nonomer structures show the different oligomeric stoichiometries among CALHM homologs. We further report the cryo-EM structures of the chimeric construct, revealing that the inter-subunit interactions at the transmembrane domain define the oligomeric stoichiometry. These findings advance our understanding of the ATP conduction and oligomerization mechanisms of CALHM channels.One Sentence SummaryCryo-EM structures reveal the ATP conduction and oligomeric assembly mechanisms of CALHM channels.


Sign in / Sign up

Export Citation Format

Share Document