Abstract
The aim of this study was to explore the effects of bone marrow mesenchymal stem cells (BMMSCs) and alendronate sodium (ALN) intervention on osteoporosis (OP). Sixty-eight 6-month-old healthy female Sprague Dawley (SD) rats were used to generate an OP model by removal of the ovaries. After 12 weeks, rats were treated with BMMSCs (BMMSC group) or ALN (ALN group) for 5 weeks. Serum type I collagen C terminal peptide (CTX_1), procollagen type I N-terminal propeptide (PINP), and bone alkaline phosphatase (BALP) were tested along with the femur bone density and other properties, including bone mineral density (BMD), BALP, percent trabecular area (BV/TV), trabecular thickness (Tb.Th), trabecular number (TbN), maximum load, maximum stress, maximum strain, and elastic modulus. BMD, BALP, BV/TV, Tb.Th, TbN, maximum load, maximum stress, maximum strain, and elastic modulus values were higher in the BMMSC group versus the ALN group relative to the control group (p < 0.05); CTX_1, PINP, trabecular separation (Tb.Sp), and osteoclast number (OC.N) were lowest in the BMMSC group versus the ALN group relative to the control group (p < 0.05). Both BMMSCs and ALN could improve the metabolic function and bone quality in osteoporotic mice while restoring the strength and toughness of bones. The intervention effects of BMMSCs are better than ALN in this model.