whisker pad
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 27)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Taeyi You ◽  
Geun Ho Im ◽  
Seong-Gi Kim

AbstractMouse fMRI under anesthesia has become increasingly popular due to improvement in obtaining brain-wide BOLD response. Medetomidine with isoflurane has become well-accepted for resting-state fMRI, but whether this combination allows for stable, expected, and robust brain-wide evoked response in mice has yet to be validated. We thus utilized intravenous infusion of dexmedetomidine with inhaled isoflurane and intravenous infusion of ketamine/xylazine to elucidate whether stable mouse physiology and BOLD response are obtainable in response to simultaneous forepaw and whisker-pad stimulation throughout 8 h. We found both anesthetics result in hypercapnia with depressed heart rate and respiration due to self-breathing, but these values were stable throughout 8 h. Regardless of the mouse condition, brain-wide, robust, and stable BOLD response throughout the somatosensory axis was observed with differences in sensitivity and dynamics. Dexmedetomidine/isoflurane resulted in fast, boxcar-like, BOLD response with consistent hemodynamic shapes throughout the brain. Ketamine/xylazine response showed higher sensitivity, prolonged BOLD response, and evidence for cortical disinhibition as significant bilateral cortical response was observed. In addition, differing hemodynamic shapes were observed between cortical and subcortical areas. Overall, we found both anesthetics are applicable for evoked mouse fMRI studies.


2021 ◽  
Author(s):  
Phan Tan Toi ◽  
Hyun Jae Jang ◽  
Kyeongseon Min ◽  
Sung-Phil Kim ◽  
Seung-Kyun Lee ◽  
...  

There has been a longstanding demand for noninvasive neuroimaging methods capable of detecting neuronal activity at both high temporal and spatial resolution. Here, we propose a novel method that enables Direct Imaging of Neuronal Activity for functional MRI (termed DIANA-fMRI) that can dynamically image spiking activity in milliseconds precision, while retaining the original benefit of high spatial resolution of MRI. DIANA-fMRI was demonstrated through in vivo mice brain imaging at 9.4 T applying electrical whisker-pad stimulation, directly imaging the spiking activity as well as capturing its sequential propagation along the thalamocortical pathway, as further confirmed through in vivo spike recording and optogenetics. DIANA-fMRI will open up new avenues in brain science by providing a deeper understanding of the brain's functional organization including neural networks.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wei-Jia Chen ◽  
Jing-Qi Niu ◽  
Yi-Ting Chen ◽  
Wen-Jing Deng ◽  
Ying-Ying Xu ◽  
...  

Abstract Objectives In this study, we investigated the possible analgesic effects of Botulinum toxin type A (BoNT/A) on trigeminal neuralgia (TN). A modified TN mouse model was established by chronic constriction injury of the distal infraorbital nerve (dIoN-CCI) in mice, and the possible roles of microglia toll-like receptor 2 (TLR2) and neuroinflammation was investigated. Methods Male C57BL/6 mice were divided into 3 groups, including sham group, vehicle-treated TN group and BoNT/A-treated TN group. Bilateral mechanical pain hypersensitivity, anxiety-like and depressive-like behaviors were evaluated by using von Frey test, open field, elevated plus-maze testing, and forced swimming test in mice, respectively. The mRNA or protein expression levels of toll-like receptors (TLRs), glia activation markers and proinflammatory factors in the trigeminal nucleus caudalis (TNC) were tested by RT-qPCR, immunofluorescence and Western blotting. We also tested the pain behaviors of TN in Tlr2−/− mice. Results We found that unilateral subcutaneous injection of BoNT/A into the whisker pad on the ipsilateral side of dIoN-CCI mice significantly attenuated bilateral mechanical pain hypersensitivity and anxiety-like behaviors induced by dIoN-CCI surgery in mice. The dIoN-CCI surgery significantly up-regulated the expression of TLR2, MyD88, CD11b (a microglia marker), IL-1β, TNF-α and IL-6 in the ipsilateral TNC in mice, and BoNT/A injection significantly inhibited the expression of these factors. Immunostaining results confirmed that BoNT/A injection significantly inhibited the microglia activation in the ipsilateral TNC in dIoN-CCI mice. TLR2 deficiency also alleviated bilateral mechanical pain hypersensitivity and the up-regulation of MyD88 expression in the TNC of dIoN-CCI mice. Conclusion These results indicate that unilateral injection of BoNT/A attenuated bilateral mechanical pain hypersensitivity and anxiety-like behaviors in dIoN-CCI mice, and the analgesic effects of BoNT/A may be associated with the inhibition of TLR2-mediated neuroinflammation in the TNC.


2021 ◽  
Author(s):  
Marta Fernandez ◽  
Carlos A Sanchez-Leon ◽  
Javier Llorente ◽  
Teresa Sierra-Arregui ◽  
Shira Knafo ◽  
...  

Atypical sensory processing is currently included within the diagnostic criteria of autism. The cerebellum is known to integrate sensory inputs of different modalities through its connectivity to the cerebral cortex. Interestingly, cerebellar malformations are among the most replicated features found in postmortem brain of individuals with autism. We studied cerebellar integration of sensory information in a mouse model of autism, knockout for the Cntnap2 gene. Cntnap2 is widely expressed in Purkinje cells and has been recently reported to regulate their morphology. Further, individuals with CNTNAP2 mutations display cerebellar malformations and CNTNAP2 antibodies are associated with a mild form of cerebellar ataxia. Previous studies in this mouse model show an altered cerebellar sensory learning. However, a physiological analysis of cerebellar function has not been performed yet. We studied sensory evoked potentials in cerebellar Crus I/II region upon electrical stimulation of the whisker pad in alert mice and found striking differences between WT and Cntnap2 KO mice. In addition, single-cell recordings identified alterations in both sensory-evoked and spontaneous firing patterns of Purkinje cells. These alterations were accompanied by altered intrinsic properties and morphological features of these neurons. Together, these results indicate that the Cntnap2 mouse model could provide novel insight into the pathophysiological mechanisms of ASD core sensory deficits. 


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Momoko Koizumi ◽  
Sayaka Asano ◽  
Akihiko Furukawa ◽  
Yoshinori Hayashi ◽  
Suzuro Hitomi ◽  
...  

Abstract Background Trigeminal neuralgia is a characteristic disease that manifests as orofacial phasic or continuous severe pain triggered by innocuous orofacial stimulation; its mechanisms are not fully understood. In this study, we established a new animal model of trigeminal neuralgia and investigated the role of P2X3 receptor (P2X3R) alteration in the trigeminal ganglion (TG) via tumor necrosis factor alpha (TNFα) signaling in persistent orofacial pain. Methods Trigeminal nerve root compression (TNC) was performed in male Sprague-Dawley rats. Changes in the mechanical sensitivity of whisker pad skin, amount of TNFα in the TG, and number of P2X3R and TNF receptor-2 (TNFR2)-positive TG neurons were assessed following TNC. The effects of TNFR2 antagonism in TG and subcutaneous P2X3R antagonism on mechanical hypersensitivity following TNC were examined. Results TNC induced unilateral continuous orofacial mechanical allodynia, which was depressed by carbamazepine. The accumulation of macrophages showing amoeboid-like morphological changes and expression of TNFα in the TG was remarkably increased following TNC treatment. The number of P2X3R- and TNFR2-positive TG neurons innervating the orofacial skin was significantly increased following TNC. TNFα was released from activated macrophages that occurred in the TG following TNC, and TNFR2 antagonism in the TG significantly diminished the TNC-induced increase in P2X3R-immunoreactive TG neurons. Moreover, subcutaneous P2X3R antagonism in the whisker pad skin significantly depressed TNC-induced mechanical allodynia. Conclusions Therefore, it can be concluded that the signaling of TNFα released from activated macrophages in the TG induces the upregulation of P2X3R expression in TG neurons innervating the orofacial region, resulting in orofacial mechanical allodynia following TNC.


2021 ◽  
pp. 0271678X2110034
Author(s):  
Gianna Huber ◽  
Mikolaj Ogrodnik ◽  
Jan Wenzel ◽  
Ines Stölting ◽  
Lukas Huber ◽  
...  

Angiotensin II receptor blockers (telmisartan) prevent rodents from diet-induced obesity and improve their metabolic status. Hyperglycemia and obesity are associated with reduced cerebral blood flow and neurovascular uncoupling which may lead to behavioral deficits. We wanted to know whether a treatment with telmisartan prevents these changes in obesity. We put young mice on high-fat diet and simultaneously treated them with telmisartan. At the end of treatment, we performed laser speckle imaging and magnetic resonance imaging to assess the effect on neurovascular coupling and cerebral blood flow. Different behavioral tests were used to investigate cognitive function. Mice developed diet-induced obesity and after 16, not 8 weeks of high-fat diet, however, the response to whisker pad stimulation was about 30% lower in obese compared to lean mice. Simultaneous telmisartan treatment increased the response again by 10% compared to obese mice. Moreover, telmisartan treatment normalized high-fat diet-induced reduction of cerebral blood flow and prevented a diet-induced anxiety-like behavior. In addition to that, telmisartan affects cellular senescence and string vessel formation in obesity. We conclude, that telmisartan protects against neurovascular unit impairments in a diet-induced obesity setting and may play a role in preventing obesity related cognitive deficits in Alzheimer’s disease.


2021 ◽  
Author(s):  
Matthew R Whiteway ◽  
Dan Biderman ◽  
Yoni Friedman ◽  
Mario Dipoppa ◽  
E. Kelly Buchanan ◽  
...  

AbstractRecent neuroscience studies in awake and behaving animals demonstrate that a deeper understanding of brain function requires a deeper understanding of behavior. Detailed behavioral measurements are now often collected using video cameras, resulting in an increased need for computer vision algorithms that extract useful information from this video data. In this work we introduce a new semi-supervised framework that combines the output of supervised pose estimation algorithms (e.g. DeepLabCut) with unsupervised dimensionality reduction methods to produce interpretable, low-dimensional representations of behavioral videos that extract more information than pose estimates alone. We demonstrate this method, the Partitioned Subspace Variational Autoencoder (PS-VAE), on head-fixed mouse behavioral videos. In a close up video of a mouse face, where we track pupil location and size, our method extracts unsupervised outputs that correspond to the eyelid and whisker pad positions, with no additional user annotations required. We use this resulting interpretable behavioral representation to construct saccade and whisking detectors, and quantify the accuracy with which these signals can be decoded from neural activity in visual cortex. In a two-camera mouse video we show how our method separates movements of experimental equipment from animal behavior, and extracts unsupervised features like chest position, again with no additional user annotation needed. This allows us to construct paw and body movement detectors, and decode individual features of behavior from widefield calcium imaging data. Our results demonstrate how the interpretable partitioning of behavioral videos provided by the PS-VAE can facilitate downstream behavioral and neural analyses.


Author(s):  
Chao-Lan Huang ◽  
Fei Liu ◽  
Yan-Yan Zhang ◽  
Jiu Lin ◽  
Min Fu ◽  
...  

Oxytocin receptor (OXTR), a G protein-coupled receptor, has been demonstrated to play a significant role in analgesia after activation by its canonical agonist, oxytocin (OXT) in the dorsal root ganglion (DRG). However, the role of OXTR in the trigeminal nervous system on the orofacial neuropathic pain is still little known. In the present study, we aimed to investigate the regulation effect and mechanism of OXTR in the trigeminal ganglion (TG) and spinal trigeminal nucleus caudalis (SpVc) on orofacial ectopic pain induced by trigeminal nerve injury. Inferior alveolar nerve (IAN) was transected to establish trigeminal ectopic pain model. Von Frey filaments behavioral test demonstrated IAN transection (IANX) evoked mechanical hypersensitivity in the whisker pad since from day 1 to at least day 14 after surgery. In addition, administration of OXT (50 μM and 100 μM) into the TG attenuated the mechanical hypersensitivity induced by IANX, which was reversed by pre-treatment with L-368,899 (a selective antagonist of OXTR) into the TG. In addition, immunofluorescence (IF) showed the expression of OXTR in neurons in the TG and SpVc. Furthermore, western blot (WB) analysis indicated that the upregulated expression of OXTR, calcitonin gene-related peptide (CGRP), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) in the TG and SpVc after IANX was inhibited by the administration of OXT into the TG. And the inhibition effect of OXT on the expression of CGRP, IL-1β, and TNF-α was abolished by pre-application of L-368,899 into the TG.


2020 ◽  
Vol 21 (23) ◽  
pp. 9173
Author(s):  
Masatoshi Ando ◽  
Yoshinori Hayashi ◽  
Suzuro Hitomi ◽  
Ikuko Shibuta ◽  
Akihiko Furukawa ◽  
...  

We evaluated the mechanisms underlying the oxytocin (OXT)-induced analgesic effect on orofacial neuropathic pain following infraorbital nerve injury (IONI). IONI was established through tight ligation of one-third of the infraorbital nerve thickness. Subsequently, the head withdrawal threshold for mechanical stimulation (MHWT) of the whisker pad skin was measured using a von Frey filament. Trigeminal ganglion (TG) neurons innervating the whisker pad skin were identified using a retrograde labeling technique. OXT receptor-immunoreactive (IR), transient receptor potential vanilloid 1 (TRPV1)-IR, and TRPV4-IR TG neurons innervating the whisker pad skin were examined on post-IONI day 5. The MHWT remarkably decreased from post-IONI day 1 onward. OXT application to the nerve-injured site attenuated the decrease in MHWT from day 5 onward. TRPV1 or TRPV4 antagonism significantly suppressed the decrement of MHWT following IONI. OXT receptors were expressed in the uninjured and Fluoro-Gold (FG)-labeled TG neurons. Furthermore, there was an increase in the number of FG-labeled TRPV1-IR and TRPV4-IR TG neurons, which was inhibited by administering OXT. This inhibition was suppressed by co-administration with an OXT receptor antagonist. These findings suggest that OXT application inhibits the increase in TRPV1-IR and TRPV4-IR TG neurons innervating the whisker pad skin, which attenuates post-IONI orofacial mechanical allodynia.


2020 ◽  
Vol 14 ◽  
Author(s):  
Wen-Yuan Wu ◽  
Yang Liu ◽  
Mao-Cheng Wu ◽  
Hong-Wei Wang ◽  
Chun-Ping Chu ◽  
...  

Corticotropin-releasing factor (CRF) is an important neuromodulator in central nervous system that modulates neuronal activity via its receptors during stress responses. In cerebellar cortex, CRF modulates the simple spike (SS) firing activity of Purkinje cells (PCs) has been previously demonstrated, whereas the effect of CRF on the molecular layer interneuron (MLI)–PC synaptic transmission is still unknown. In this study, we examined the effect of CRF on the facial stimulation–evoked cerebellar cortical MLI-PC synaptic transmission in urethane-anesthetized mice by in vivo cell-attached recording, neurobiotin juxtacellular labeling, immunohistochemistry techniques, and pharmacological method. Cell-attached recordings from cerebellar PCs showed that air-puff stimulation of ipsilateral whisker pad evoked a sequence of tiny parallel fiber volley (N1) followed by MLI-PC synaptic transmission (P1). Microapplication of CRF in cerebellar cortical molecular layer induced increases in amplitude of P1 and pause of SS firing. The CRF decreases in amplitude of P1 waveform were in a dose-dependent manner with the EC50 of 241 nM. The effects of CRF on amplitude of P1 and pause of SS firing were abolished by either a non-selective CRF receptor antagonist, α-helical CRF-(9-14), or a selective CRF-R1 antagonist, BMS-763534 (BMS, 200 nM), but were not prevented by a selective CRF-R2 antagonist, antisauvagine-30 (200 nM). Notably, application CRF not only induced a significant increase in spontaneous spike firing rate, but also produced a significant increase in the number of the facial stimulation–evoked action potential in MLIs. The effect of CRF on the activity of MLIs was blocked by the selective CRF-R1 antagonist, and the MLIs expressed the CRF-R1 imunoreactivity. These results indicate that CRF increases excitability of MLIs via CRF-R1, resulting in an enhancement of the facial stimulation–evoked MLI-PC synaptic transmission in vivo in mice.


Sign in / Sign up

Export Citation Format

Share Document