supervisory controller
Recently Published Documents


TOTAL DOCUMENTS

166
(FIVE YEARS 30)

H-INDEX

13
(FIVE YEARS 3)

2021 ◽  
Vol 12 (1) ◽  
pp. 226
Author(s):  
Gulnora Yakhshilikova ◽  
Ethelbert Ezemobi ◽  
Sanjarbek Ruzimov ◽  
Andrea Tonoli

Small capacity and passively cooled battery packs are widely used in mild hybrid electric vehicles (MHEV). In this regard, continuous usage of electric traction could cause thermal runaway of the battery, reducing its life and increasing the risk of fire incidence. Hence, thermal limitations on the battery could be implemented in a supervisory controller to avoid such risks. A vast literature on the topic shows that the problem of battery thermal runaway is solved by applying active cooling or by implementing penalty factors on electric energy utilization for large capacity battery packs. However, they do not address the problem in the case of passive cooled, small capacity battery packs. In this paper, an experimentally validated electro-thermal model of the battery pack is integrated with the hybrid electric vehicle simulator. A supervisory controller using the equivalent consumption minimization strategy with, and without, consideration of thermal limitations are discussed. The results of a simulation of an MHEV with a 0.9 kWh battery pack showed that the thermal limitations of the battery pack caused a 2–3% fuel consumption increase compared to the case without such limitations; however, the limitations led to battery temperatures as high as 180 °C. The same simulation showed that the adoption of a 1.8 kWh battery pack led to a fuel consumption reduction of 8–13% without thermal implications.


Author(s):  
Nadjim Horri ◽  
Olivier Haas ◽  
Sheng Wang ◽  
Mathias Foo ◽  
Manuel Silverio Fernandez

This paper proposes a mode switching supervisory controller for autonomous vehicles. The supervisory controller selects the most appropriate controller based on safety constraints and on the vehicle location with respect to junctions. Autonomous steering, throttle and deceleration control inputs are used to perform variable speed lane keeping assist, standard or emergency braking and to manage junctions, including roundabouts. Adaptive model predictive control with lane keeping assist is performed on the main roads and a linear pure pursuit inspired controller is applied using waypoints at road junctions where lane keeping assist sensors present a safety risk. A multi-stage rule based autonomous braking algorithm performs stop, restart and emergency braking maneuvers. The controllers are implemented in MATLAB® and Simulink™ and are demonstrated using the Automatic Driving Toolbox™ environment. Numerical simulations of autonomous driving scenarios demonstrate the efficiency of the lane keeping assist mode on roads with curvature and the ability to accurately track waypoints at cross intersections and roundabouts using a simpler pure pursuit inspired mode. The ego vehicle also autonomously stops in time at signaled intersections or to avoid collision with other road users.


Author(s):  
Ferdie F. H. Reijnen ◽  
Toby R. Erens ◽  
Joanna M. van de Mortel-Fronczak ◽  
Jacobus E. Rooda

AbstractThe development of supervisory controllers for cyber-physical systems is a laborious and error-prone process. Supervisor synthesis enables control designers to automatically synthesize a correct-by-construction supervisor from a model of the plant combined with a model of the control requirements. From the supervisor model, controller code can be generated which is suitable for the implementation on a programmable logic controller (PLC). Supervisors for industrial systems that operate in close proximity to humans have to adhere to strict safety standards. To achieve these standards, safety PLCs (SPLCs) are used. For SPLC implementation, the supervisor has to be split into a regular part and a safety part. In previous work, a method is proposed to automatically split a supervisor model for this purpose. The method assumes that the provided plant model is a collection of finite automata. In this paper, the extension to extended finite automata is described. Additionally, guidelines are provided for modeling the plant and the requirements to achieve a favorable splitting. A case study on a rotating bridge is elaborated which has been used to validate the method. The case study spans all development steps, including the implementation of the resulting supervisor to control the real bridge.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5518
Author(s):  
Sharmila Sumsurooah ◽  
Yun He ◽  
Marcello Torchio ◽  
Konstantinos Kouramas ◽  
Beniamino Guida ◽  
...  

A centralised smart supervisor (CSS) controller with enhanced electrical energy management (E2-EM) capability has been developed for an Iron Bird Electrical Power Generation and Distribution System (EPGDS) within the Clean Sky 2 ENhanced electrical energy MAnagement (ENIGMA) project. The E2-EM strategy considers the potential for eliminating the 5 min overload capability of the generators to achieve a substantial reduction in the mass of the EPGDS. It ensures optimal power and energy sharing within the EPGDS by interfacing the CSS with the smart grid network (SGN), the energy storage and regeneration system (ESRS), and the programmable load bank 1 secondary distribution board (PLB1 SDU) during power overloads and failure conditions. The CSS has been developed by formalizing E2-EM logic as an algorithm operating in real time and by following safety and reliability rules. The CSS undergoes initial verification using model-in-the-loop (MIL) testing. This paper describes the EPGDS simulated for the MIL testing and details the E2-EM strategy, the algorithms, and logic developed for the ENIGMA CSS design. The CSS was subjected to two test cases using MIL demonstration, and based on the test results, the performance of the ENIGMA CSS is verified and validated.


2021 ◽  
Vol 3 (3) ◽  
pp. 149-162
Author(s):  
G Ranganathan ◽  
Jennifer S Raj

This paper has proposed a hybrid electric vehicle that uses intelligent energy management strategy to decrease the energy consumption of the vehicle. Here, the total energy consumption of the vehicle is initially modelled and further investigated to reduce the amount of energy used to be identified as a sum of electrical energy provided by consumed fuels and on-board batteries. In particular, an intelligent controller is proposed in this work to execute its ability to decrease the total amount of energy consumed and improve the energy efficiency of the vehicle. A fuzzy system is utilized in an account supervisory controller to decide the appropriate mode of operation for the system. The part of the proposed work involves development of optimal control strategies by using neuro-fuzzy logic. In order to obtain optimal performance, the controllers are used to regulate vehicle subsystems and set points. The biggest advantage of this work is the reduction in energy consumption and their ability to execute the operation online. Simulink/MATLAB is used to simulate and validate the performance of the proposed work under various conditions and under several dataset values.


2021 ◽  
Vol 103 ◽  
pp. 87-99
Author(s):  
Mohammad Amin Ghanavati ◽  
Ehsan Vafa ◽  
Mohammad Shahrokhi

2021 ◽  
Author(s):  
Abdul Afram

The residential HVAC systems in Canada can consume more than 60% of the total energy in a house which results in higher operating costs and environmental pollution. The HVAC is a complex system with variable loads acting on it due to the changes in weather and occupancy. The energy consumption of the HVAC systems can be reduced by adapting to the ever changing loads and implementation of energy conservation strategies along with the appropriate control design. Most of the existing HVAC systems use simple on/off controllers and lack any supervisory controller to reduce the energy consumption and operating cost of the system. In Ontario, due to the variable price of electricity, there is an opportunity to design intelligent control system which can shift the loads to off-peak hours and reduce the operating cost of the HVAC system. In order to take advantage of this opportunity, a supervisory controller based on model predictive control (MPC) was designed in this research. The residential HVAC system models were developed and accurately calibrated with the data measured from the Toronto and Region Conservation Authority’s Archetype Sustainable House, House B (TRCA-ASHB) located in Vaughan, Ontario, Canada. Since HVAC is a large and complex system, it was divided into its major subsystems called energy recovery ventilator (ERV), air handling unit (AHU), radiant floor heating (RFH) system, ground source heat pump (GSHP) and buffer tank (BT). The models of each of the subsystem were developed and calibrated individually. The models were then combined together to develop the model of the whole residential HVAC system. The developed model is able to predict the temperature, flow rate, energy consumption and cost for each individual subsystem and whole HVAC system. The model was used to simulate the performance of the existing HVAC system with on/off controllers and develop the supervisory MPC. The supervisory controller was implemented on the HVAC system of TRCA-ASHB and at least 16% cost savings were verified.


2021 ◽  
Author(s):  
Abdul Afram

The residential HVAC systems in Canada can consume more than 60% of the total energy in a house which results in higher operating costs and environmental pollution. The HVAC is a complex system with variable loads acting on it due to the changes in weather and occupancy. The energy consumption of the HVAC systems can be reduced by adapting to the ever changing loads and implementation of energy conservation strategies along with the appropriate control design. Most of the existing HVAC systems use simple on/off controllers and lack any supervisory controller to reduce the energy consumption and operating cost of the system. In Ontario, due to the variable price of electricity, there is an opportunity to design intelligent control system which can shift the loads to off-peak hours and reduce the operating cost of the HVAC system. In order to take advantage of this opportunity, a supervisory controller based on model predictive control (MPC) was designed in this research. The residential HVAC system models were developed and accurately calibrated with the data measured from the Toronto and Region Conservation Authority’s Archetype Sustainable House, House B (TRCA-ASHB) located in Vaughan, Ontario, Canada. Since HVAC is a large and complex system, it was divided into its major subsystems called energy recovery ventilator (ERV), air handling unit (AHU), radiant floor heating (RFH) system, ground source heat pump (GSHP) and buffer tank (BT). The models of each of the subsystem were developed and calibrated individually. The models were then combined together to develop the model of the whole residential HVAC system. The developed model is able to predict the temperature, flow rate, energy consumption and cost for each individual subsystem and whole HVAC system. The model was used to simulate the performance of the existing HVAC system with on/off controllers and develop the supervisory MPC. The supervisory controller was implemented on the HVAC system of TRCA-ASHB and at least 16% cost savings were verified.


Sign in / Sign up

Export Citation Format

Share Document