normal water
Recently Published Documents


TOTAL DOCUMENTS

248
(FIVE YEARS 81)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Rajesh Prakash Guragain ◽  
Suman Prakash Pradhan ◽  
Hom Bahadur Baniya ◽  
Bishnu Prasad Pandey ◽  
Niroj Basnet ◽  
...  

The present study reports the generation of plasma-activated water (PAW) using dielectric barrier discharge (DBD), its physicochemical properties, and its potential impact on the seed germination and seedling growth of soybean. The results revealed significant changes in physical parameters, such as pH, total dissolved solids, total suspended solids, turbidity, conductivity, dissolved oxygen, and chemical parameters, such as calcium, chromium, sodium, manganese, nitrate, nitrites, phosphorus, and sulfur and biological parameter such as E. coli in water after plasma treatment. The concentration of dissolved oxygen, conductivity, nitrate, nitrite, and sulfur was increased with an increase in water treatment time, and the amounts of the other analyzed parameters decreased with the increase in water treatment time. The effects of untreated water and plasma-activated water treated for 20 minutes on soybean germination and growth were studied. The germination rate was found to be higher with plasma-treated water. Shoot lengths, seedlings length, vigor index, and germination rates were increased as compared to those germinated by normal water irrigation. The seedlings irrigated with PAW responded to the abundance of nitrogen by producing intensely green leaves because of their increased chlorophyll a as compared to seedlings irrigated with normal water. However, the content of chlorophyll b and carotenoids was found to decrease in the case of seedlings irrigated with PAW. Based on this report, we conclude that PAW could be used to substantially enhance seed germination and seedling growth.


2021 ◽  
Vol 15 (1) ◽  
pp. 674-679
Author(s):  
Khalid S. Almulhim ◽  
Muhanad S. Alhareky ◽  
Ahmed Mohammed AlDakhil ◽  
Odai Alsultan ◽  
Kasumi K. Barouch

Background: Chlorhexidine oral rinse has been used as an adjuvant in the treatment of periodontal disease. However, there are drawbacks of using chlorhexidine i.e. tooth staining and other side effects, including allergy reaction. In light of the proven therapeutic properties of pollen water as well as its relatively cheap cost in the market, pollen water has a potential to be an effective alternative to chlorhexidine oral rinse. The aim of this study is to compare the degree of tooth staining influenced by water-based pollen mouthwash to the standard Chlorhexidine mouthwash using spectrophotometer. Materials and Methods: 24 specimens from extracted intact human teeth were soaked into the three different solutions, Chlorhexidine, Pollen water (date palm pollen water suspension), and normal water. Color measurements were carried out by a spectrophotometer devise and recorded at 5 different time intervals. Color change (∆E), Chroma (C*) and Hue (H*) were analyzed and compared among the three solutions. Results: Overall mean ∆E was similar in all groups, significant difference between all time points was found only in pollen water. The change in C* was higher in pollen water as compared to other solutions. There was a subtle increase in H* in the Chlorhexidine samples after week 3. The H* values in pollen water were stable, but a sudden decrease was observed in week 6. The difference in H* among the three solutions was significant after 3 weeks. Conclusion: Within the limitation of our study, it can be concluded that Pollen water stained teeth to a lesser extent than did chlorhexidine. It might be beneficial to use Pollen water as mouthwash however, further investigation is needed regarding the efficacy of plaque control.


2021 ◽  
Vol 11 (2) ◽  
pp. 127-136
Author(s):  
Sadaf Noshin ◽  
M. Adil Khan ◽  
M. Salman ◽  
M. Shahzad Aslam ◽  
Haseeb Ahmad ◽  
...  

Abstract In construction industry, demolished construction waste is recently used as reprocessed aggregate to produce environmentally friendly concrete which is a good substitute to normal crush due to increased demand of ecological growth and conservation benefits. Though, the properties of recycled aggregate concrete are smallest as compared to concrete produced from natural aggregate and these properties can be enhanced by adding some materials having cementitious properties. Rice husk ash (RHA) is used as partial replacement of cement in recycled aggregate concrete to improve the properties as well as to conserve the natural resources. The elementary purpose of this investigation is to determine the compressive strength of concrete by the replacement of cement with different percentages of rice husk ash such as 0%, 7.5%, 10%, 12.5%, 15%, and 17.5% respectively with different curing conditions. For the experimental program approximate 198 cylinders (18 for rapid curing, 90 for normal water curing and 90 for acid curing) are casted with the mix proportion of 1:2:4 and water to cement ratio of 0.50 whereas curing is done at the ages of 3,7,14,21 and 28 days. Various experiments are performed on fresh and hardened concrete to determine the effects of rice husk ash on recycled aggregate concrete with different curing conditions. Linear regression analysis is carried out to determine the compressive strength of concrete. It is pragmatic from the slump test results that the workability of recycled aggregate concrete is decreased by increasing the quantity of rice husk ash. This reduction in slump is due to high water absorption of recycled aggregates and rice husk ash. Further, the compressive strength of recycled aggregate concrete with normal and acid curing is decreased by increasing the percentages of rice husk ash. It is also observed that at 28- days of normal water curing for mix M1,M2,M3,M4,M5 and M6 the compressive strength is increased by 0.96%, 2.74% 1.45%,4.50%,4.23% and 4.22% respectively as compared to the compressive strength values at 28 days of acid water curing. Therefore, it is concluded that recycled aggregate concrete with 10 to 12% of rice husk ash is suitable for properties of concrete. The acid water curing has negative impacts on hardened properties of concrete as it reduced the compressive strength of concrete as compared to normal water curing.


2021 ◽  
Vol 937 (2) ◽  
pp. 022116
Author(s):  
P Kostylev ◽  
A Aksenov ◽  
E Krasnova

Abstract The article shows the results of a morpho-biological study of rice cultivars grown in the fields of the Rostov Region under drought conditions and normal water supply. The aim of the research is a comparative structural analysis of rice samples under conditions of soil and air drought and under normal flooding with water. The formation of quantitative traits in plants under normal watering conditions and with a moisture deficit occurred in different ways. Under drought conditions, compared with the norm, the yield decreased (67.9% of the norm), the number of plants to be harvested per 1 m2, the mass of the panicle, the mass of 1000 grains; increased bushiness, the number of spikelets on the panicle and its density, the growing season “flooding with water – flowering”. The number of empty spikelets on a panicle and the percentage of empty grain increased especially strongly. The values of the remaining studied characteristics were at the same level in both variants of the experiment. The maximum yield in dry conditions was formed by the varieties Boyarin (4.43 t/ha), Contact (4.53 t/ha), Zolotye vshody (4.60 t/ha) and Sukhodol (4.60 t/ha). Drought-resistant forms that can be used to create dry-land rice varieties have been identified.


CANTILEVER ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 85-89
Author(s):  
Anthony Costa ◽  
Bimo Brata Adhitya Bimo ◽  
Kencana Verawati Vera

There is a potential overflow of a river during rain, resulting in water levels raised beyond normal water levels in the Sentiong Underpass Area, Jakarta in which is one of the strategic locations in Central Jakarta. To guarantee and maximize water flow in the Sentiong Underpass area, a water discharge regulatory system was created to be the form of underground wall structures equipped with pump houses. This wall structure is made of reinforced concrete structures underground at ± 3 m depth. This research aims to evaluate and analyze the underground wall capacity with reference to principles designed by SNI 2847-2013 and SNI 1727-2013. Analysis of data used based on field data including soil test parameters and vehicle traffic. Structural analysis which used is Computer Program (STAADPro), then based on the data obtained from the results of analysis and evaluation can be determined magnitude of displacement and dimensions of the reinforcement. The wall structure in Sentiong Area, Jakarta was planned to use K-300 concrete as high as 3m underground, 40 cm of wall thickness, bottom floor thickness 40 cm, and upper floor thickness 20 cm. The total length of this underground wall structure was planned 32 m. Based on the results of the analysis, it was found that displacement and capacity structure qualified safely with design steel reinforcement diameters of D13 mm and D16 mm.


2021 ◽  
Author(s):  
Yuji Kato ◽  
Tomoyuki Matsumoto ◽  
Setsuko Koura

A certain amount of water needs to be maintained in the stratum corneum of the skin in order to maintain the skin barrier function. Therefore, it is important to supply water to the stratum corneum of the skin to reduce trans epidermal water loss (TEWL). However, because normal water has large clusters, it is difficult to penetrate the stratum corneum of the skin. Therefore, it was considered that the use of Ultra-fine bubbles (UFB) water, which is said to have small water clusters, promotes penetration into the stratum corneum of the skin, and is useful for improving the skin barrier function. The artificial skin to which O2-UFB water was dripped had the highest water content and the lowest TEWL. It also had a high affinity for human skin. From these results, improvement of skin barrier function by O2-UFB water can be expected.


Author(s):  
Indrajeet Sahu ◽  
Kalpana Rayaguru ◽  
Rashmi Ranjan Pattnaik ◽  
Sanjaya Kumar Dash

Background: Bael is an important indigenous fruit, which is rich in nutritional and health promoting factors. Development of value-added products from this fruit poses a problem as the fruit has a hard rind and is difficult to be removed by hand. Methods: The objective of this investigation was to evaluate the effect of different conditioning methods as normal water dipping (25-27°C), chilling (10-11°C), freezing (4-5°C) and hot water dipping (90-95°C) on firmness and other mechanical properties of raw and matured bael fruit, with a goal of devising some methods for easy removal of the rind. The fruits after conditioning were subjected to puncture test by universal testing machine. Distinct peaks were observed on the force-displacement traces which indicated the rupture force and firmness of the fruits. The changes observed in rupture force, deformation and firmness in conditioned samples were compared. Result: Rupture force measured for control sample (kept under ambient conditions) was 344.4±27.13 N and was found to be lower than that of the conditioned samples. The minimum rupture force of 192.6±14.41 N was observed in frozen sample. No significant difference in rupture force could be observed between the normal water dipped sample and chilled samples. Hot water dipped sample required a rupture force of 215.3±29.2 N, which was not significantly (p greater than 0.05) less than those of other treatments but, the green color of the fruits degraded to brown. The change in other mechanical properties also remained similar. The results would be useful for preparing the raw bael fruit for further processing and value addition.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wasim Barham ◽  
Ammar AL-Maabreh ◽  
Omar Latayfeh

PurposeThe influence of using magnetic water instead of tap water in the mechanical properties of the concrete exposed to elevated temperatures was investigated. Two concrete mixes were used and cast with the same ingredients. Tap water was used in the first mix and magnetic water was used in the second mix. A total of 48 specimens were cast and divided as follows: 16 cylinders for the concrete compressive strength test (8 samples for each mix), 16 cylinders for the splitting tensile strength (8 specimens for each mix) and 16 beams to test the influences of magnetized water on the flexural strength of concrete (8 specimens for each mixture). Specimens were exposed to temperatures of (25 °C, 200 °C, 400 °C and 600 °C). The experimental results showed that magnetic water highly affected the mechanical properties of concrete. Specimens cast and curried out with magnetic water show higher compressive strength, splitting tensile strength and flexural strength compared to normal water specimens at all temperatures. The relative strength range between the two types of water used was 110–123% for compressive strength and 110–133% for splitting strength. For the center point loading test, the relative flexural strength range was 118–140%. The use of magnetic water in mixing concrete contribute to a more complete hydration process.Design/methodology/approachExperimental study was carried out on two concrete mixes to investigate the effect of magnetic water. Mix#1 used normal water as the mixing water, and Mix#2 used magnetic water instead of normal water. After 28 days, all the samples were taken out of the tank and left to dry for seven days, then they were divided into different groups. Each group was exposed to a different temperature where it was placed in a large oven for two hours. Three different tests were carried out on the samples, these tests were concrete compressive strength, flexural strength and splitting tensile strength.FindingsExposure of concrete to high temperatures had a significant influence on concrete mechanical properties. Specimens prepared using magnetic water showed higher compressive strength at all temperature levels. The use of magnetic water in casting and curing concrete can increase the compressive strength by 23%. Specimens prepared using magnetic water show higher splitting tensile strength at all temperatures up to 33%. The use of magnetic water in casting and curing can strengthen and increase concrete resistance to high temperatures, a significant enhancement in flexural strength at all temperatures was found with a value up to 40%.Originality/valuePrevious research proved the advantages of using magnetic water for improving the mechanical properties of concrete under normal conditions. The potential of using magnetic water in the concrete industry in the future requires conducting extensive research to study the behavior of magnetized concrete under severe conditions to which concrete structures may be subjected to. These days, there are attempts to obtain stronger concrete with high resistance to harsh environmental conditions without adding new costly ingredients to its main mixture. No research has been carried out to investigate the effect of magnetic water on the mechanical properties of concrete exposed to elevated temperature. The main objective of this study is to evaluate the effect of using magnetic water on the mechanical properties of hardened concrete subjected to elevated temperature.


2021 ◽  
Vol 4 ◽  
pp. 67-74 ◽  
Author(s):  
Sangeeta Jain ◽  
Rajesh Kumar Kumawat ◽  
Mratyunjay Rajkumar Gupta

Objectives: Homoeopathic dilutions are used to increase active principles in medicinal plants, detoxify plants, increase plant growth rate and fruit production, improve plant metabolism and control diseases. This controlled experimental prospective study was conducted to evaluate the effect of homoeopathic medicines Zincum metallicum 6CH and Z. metallicum 12CH on plant growth of Abelmoschus esculentus L. in a natural environment. This study helps assess and establish the role of homoeopathy in propagating plant growth. Materials and Methods: A. esculentus seeds were cultivated in a designated area of the Homoeopathy University campus. Among these, 30 received Zincum 6CH (20 drops in 1 litre water), while 30 received Zincum 12CH (20 drops in 1 L water) and 30 received normal water. After 60 days, the entire plant was measured for height, pod length and productivity. Results: After 60 days, the number of fruits (plant productivity) in the groups receiving Zincum 6CH and 12CH was 335 and 267, respectively; in the group receiving normal water, the number of fruits was 159. The heights of plants receiving Zincum 6CH (M = 48.4 cm, SD = 2.65) and 12CH (M = 40.1 cm, SD = 2.39) were comparatively more than in plants receiving normal water (M = 31.6 cm SD = 2.26). The length of pods in plants receiving Zincum 6CH (M=13.3 cm, SD = 0.96) and 12CH (M = 10.3 cm, SD = 0.97) was comparatively more than in plants receiving normal water (M = 8.9 cm SD = 0.62). Conclusion: The application of potentised homoeopathic medicines Zincum 6CH and 12CH on A. esculentus demonstrated a beneficial result, as observed through significant differences in plant productivity, mean plant height and mean pod length among the experimental and control groups. Zincum 6CH showed more efficacy than 12CH in all aspects of growth.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sheng-Min Liang ◽  
Fei Zhang ◽  
Ying-Ning Zou ◽  
Kamil Kuča ◽  
Qiang-Sheng Wu

Soil water deficit seriously affects crop production, and soil arbuscular mycorrhizal fungi (AMF) enhance drought tolerance in crops by unclear mechanisms. Our study aimed to analyze changes in non-targeted metabolomics in roots of trifoliate orange (Poncirus trifoliata) seedlings under well-watered and soil drought after inoculation with Rhizophagus intraradices, with a focus on terpenoid profile. Root mycorrhizal fungal colonization varied from 70% under soil drought to 85% under soil well-watered, and shoot and root biomass was increased by AMF inoculation, independent of soil water regimes. A total of 643 secondary metabolites in roots were examined, and 210 and 105 differential metabolites were regulated by mycorrhizal fungi under normal water and drought stress, along with 88 and 17 metabolites being up-and down-regulated under drought conditions, respectively. KEGG annotation analysis of differential metabolites showed 38 and 36 metabolic pathways by mycorrhizal inoculation under normal water and drought stress conditions, respectively. Among them, 33 metabolic pathways for mycorrhization under drought stress included purine metabolism, pyrimidine metabolism, alanine, aspartate and glutamate metabolism, etc. We also identified 10 terpenoid substances, namely albiflorin, artemisinin (−)-camphor, capsanthin, β-caryophyllene, limonin, phytol, roseoside, sweroside, and α-terpineol. AMF colonization triggered the decline of almost all differential terpenoids, except for β-caryophyllene, which was up-regulated by mycorrhizas under drought, suggesting potential increase in volatile organic compounds to initiate plant defense responses. This study provided an overview of AMF-induced metabolites and metabolic pathways in plants under drought, focusing on the terpenoid profile.


Sign in / Sign up

Export Citation Format

Share Document