chronic electrical stimulation
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 11)

H-INDEX

37
(FIVE YEARS 2)

Author(s):  
Malin Silverå Ejneby ◽  
Marie Jakešová ◽  
Jose J. Ferrero ◽  
Ludovico Migliaccio ◽  
Ihor Sahalianov ◽  
...  

2020 ◽  
Author(s):  
Denise Oswalt ◽  
Projag Datta ◽  
Neil Talbot ◽  
Zaman Mirzadeh ◽  
Bradley Greger

Prostheses that can restore limited vision in the profoundly blind have been under investigation for several decades. Studies using epicortical macroelectrodes and intracortical microelectrodes have validated that electrical stimulation of primary visual cortical can serve as the basis for a vision prosthesis. However, neither of these approaches has resulted in a clinically viable vision prosthesis. Epicortical macroelectrodes required high levels of electrical current to evoke visual percepts, while intracortical microelectrodes faced challenges with longevity and stability. We hypothesized that epicortical microelectrodes could evoke visual percepts at lower currents than macroelectrodes and provide improved longevity and stability compared with intracortical microelectrodes. To test this hypotheses we implanted epicortical microelectrode arrays over the primary visual cortex of a nonhuman primate. Electrical stimulation via this array was used to evaluate the ability of epicortical microstimulation to evoke differentiable visual percepts. Visual percepts were evoked using the epicortical microelectrode array, and at electrical currents notably lower than those required to evoke visual percepts on macroelectrode arrays. The electrical current thresholds for evoking visual percepts on the epicortical microelectrode array were consistent across multiple array implants and over several months. Normal vision of light perception was not impaired by multiple array implants or chronic electrical stimulation, demonstrating that no gross visual deficit resulted from the experiments. We specifically demonstrate that epicortical microelectrode interfaces can serve as the basis for a vision prosthesis and more generally may provide an approach to evoking perception in multiple sensory modalities.


Biomedicines ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 369
Author(s):  
Kaori Iimura ◽  
Nobuhiro Watanabe ◽  
Philip Milliken ◽  
Yee-Hsee Hsieh ◽  
Stephen J. Lewis ◽  
...  

Electrical stimulation of myelinated afferent fibers of the superior laryngeal nerve (SLN) facilitates calcitonin secretion from the thyroid gland in anesthetized rats. In this study, we aimed to quantify the electrical SLN stimulation-induced systemic calcitonin release in conscious rats and to then clarify effects of chronic SLN stimulation on bone mineral density (BMD) in a rat ovariectomized disease model of osteoporosis. Cuff electrodes were implanted bilaterally on SLNs and after two weeks recovery were stimulated (0.5 ms, 90 microampere) repetitively at 40 Hz for 8 min. Immunoreactive calcitonin release was initially measured and quantified in systemic venous blood plasma samples from conscious healthy rats. For chronic SLN stimulation, stimuli were applied intermittently for 3–4 weeks, starting at five weeks after ovariectomy (OVX). After the end of the stimulation period, BMD of the femur and tibia was measured. SLN stimulation increased plasma immunoreactive calcitonin concentration by 13.3 ± 17.3 pg/mL (mean ± SD). BMD in proximal metaphysis of tibia (p = 0.0324) and in distal metaphysis of femur (p = 0.0510) in chronically SLN-stimulated rats was 4–5% higher than that in sham rats. Our findings demonstrate chronic electrical stimulation of the SLNs produced enhanced calcitonin release from the thyroid gland and partially improved bone loss in OVX rats.


2020 ◽  
Vol 63 (4) ◽  
pp. 637-647
Author(s):  
SongFang Wu ◽  
LuBin Wang ◽  
YuWei Zhao ◽  
HongJi Sun ◽  
YiRan Lang ◽  
...  

2019 ◽  
Vol 25 (Suppl. 1-2) ◽  
pp. 79-90 ◽  
Author(s):  
Angel Ramos Macias ◽  
Angel Ramos de Miguel ◽  
Isaura Rodriguez Montesdeoca ◽  
Silvia Borkoski Barreiro ◽  
Juan Carlos Falcón González

Introduction: Bilateral vestibulopathy is an important cause of imbalance that is misdiagnosed. The clinical management of patients with bilateral vestibular loss remains difficult as there is no clear evidence for an effective treatment. In this paper, we try to analyze the effect of chronic electrical stimulation and adaptation to electrical stimulation of the vestibular system in humans when stimulating the otolith organ with a constant pulse train to mitigate imbalance due to bilateral vestibular dysfunction (BVD). Methods: We included 2 patients in our study with BVD according to Criteria Consensus of the Classification Committee of the Bárány Society. Both cases were implanted by using a full-band straight electrode to stimulate the otoliths organs and simultaneously for the cochlear stimulation we use a perimodiolar electrode. Results: In both cases Vestibular and clinical test (video head impulse test, videonistagmography cervical vestibular evoked myogenic potentials, cVEMP and oVEMP), subjective visual vertical test, computerized dynamic posturography, dynamic gait index, Time UP and Go test and dizziness handicap index) were performed. Posture and gait metrics reveal important improvement if compare with preoperartive situation. Oscillopsia, unsteadiness, independence and quality of life improved to almost normal situation. Discussion/Conclusion: Prosthetic implantation of the otolith organ in humans is technically feasible. Electrical stimulation might have potential effects on balance and this is stable after 1 year follow-up. This research provides new possibilities for the development of vestibular implants to improve gravito-inertial acceleration sensation, in this case by the otoliths stimulation.


2019 ◽  
Vol 17 (4) ◽  
pp. 822-827
Author(s):  
Andrea L. Kossler ◽  
Mark Brinton ◽  
Zara M. Patel ◽  
Roopa Dalal ◽  
Christopher N. Ta ◽  
...  

2019 ◽  
Vol 12 (4) ◽  
pp. 1077-1079 ◽  
Author(s):  
Keith Starnes ◽  
Benjamin H. Brinkmann ◽  
David Burkholder ◽  
Jamie Van Gompel ◽  
Matt Stead ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document