surface diffuseness
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 10)

H-INDEX

13
(FIVE YEARS 0)

2021 ◽  
Vol 104 (5) ◽  
Author(s):  
V. Choudhary ◽  
W. Horiuchi ◽  
M. Kimura ◽  
R. Chatterjee

2021 ◽  
Vol 19 (10) ◽  
pp. 100-105
Author(s):  
Nagham H. Hayef ◽  
Khalid S. Jassim

A systematic study on the surface characteristic of the nucleus-nucleus potential for some heavy-ion. The nuclear potential has been described by using Woods-Saxon (WS), the single-channel (SC) and the coupled-channels (CC) calculations, which were between the relative motion of the colliding nuclei and their intrinsic motions, were conducted to study its influence on calculation, the ratio of the quasi-elastic to the Rutherford cross sections and probe the surface diffuseness method was used to find the best fitted value of the diffuseness parameters in comparison with the experimental data. We find that the best fitted value of the diffuseness parameter which obtained through a coupled-channel calculation with inert target and excited projectile forIn the current work, the single-channel (SC) and the coupled-channels (CC) calculations, which were between the relative motion of the colliding nuclei and their intrinsic motions, were conducted to study its influence on calculation, the ratio of the quasi-elastic to the Rutherford cross sections and probe the surface diffuseness find that the best fitted value of the diffuseness parameter which obtained through a coupled-channel calculation with excited target and projectile excited also inert projectile-excited target for the 16O+208Pb andexcited projectile and inert target for the 16O+63Cu.


Author(s):  
L. Vasanthi ◽  
N. S. Rajeswari

In order to describe scattering, fusion, fission and ground state masses, Krappe and collaborators developed unified nuclear potential, by generalizing liquid drop model. They have incorporated phenomenological parameters accounting for the attractive force between two separated fragments. One of the phenomenological parameters involved in this model is the range of folded Yukawa function, which accounts for surface diffuseness of the potential and short range attractive interaction. The role of range of folding function of Yukawa-plus-exponential potential is analyzed for alpha decay of heavy and superheavy nuclei. Significant effect of this function is noted in preformation probability which improves the accuracy of half-lives of alpha decay. Half-lives for alpha decay are better obtained for two values of the range of folding function 0.54 and 0.8[Formula: see text]fm for heavy and superheavy mass regions, respectively. The study confirms the associated shell structure [Formula: see text] in heavy nuclei and [Formula: see text] and [Formula: see text] in superheavy nuclei. The calculations are extended to predict the half-lives of superheavy nuclei with [Formula: see text] and [Formula: see text] which are not yet synthesized experimentally.


2021 ◽  
Vol 66 (2) ◽  
pp. 105
Author(s):  
M. Aygun

The effect of the deformed surface diffuseness on the elastic scattering reactions with actinide and lanthanide targets is examined. The elastic scattering cross-sections are calculated by assuming the spherical structure for the projectiles and both spherical and deformed structures for the target nuclei. The theoretical calculations are performed by using spherical and deformed Broglie–Winther potentials for the real potential and the Woods–Saxon potential for the imaginary potential in the framework of the optical model. Finally, the effect of the angle dependence on the deformed surface diffuseness for two different orientation angles such as 0 = п/4 and 0 = п/2 is studied. All the theoretical results are compared with both one another and experimental data.


2019 ◽  
Vol 3 ◽  
pp. 104
Author(s):  
T. S. Kosmas ◽  
J. D. Vergados

Proton partial occupancies of the nuclear surface orbits are used in a modified shell model approach to study isoscalar dipole transition charge densities and form factors for self-conjugate nuclei. The energy-weighted sum-rules of Harakeh-Dieperink for both the transition form factor and transition charge density are modified so as fractional occupation probabilities of the states may be used. The partial occupancies of the surface n/j-levels are determined by fitting to the experimental inelastic scattering data and compared with those found previously in the study of nuclear ground state properties


2019 ◽  
Vol 992 ◽  
pp. 121620
Author(s):  
Monika Goyal ◽  
Rajiv Kumar ◽  
Pradeep Singh ◽  
Raj Kumar Seth ◽  
Rajesh Kharab

2019 ◽  
Vol 9 (01) ◽  
pp. 22
Author(s):  
Viska Inda Variani ◽  
Ida Usman ◽  
Muhammad Zamrun Firihu

We study the heavy-ion reaction at sub-barrier energies for <sup>16</sup>O+<sup>144,154</sup>Smsystems using full order coupled-channels formalism. We especially investigate the effect of fusion and quasi- elastic barrier distributions on the surface diffuseness and the coupling radius parameters of the nuclear potential for these systems. We found that the structure of fusion and quasi-elastic barrier distributions is more sensitive to the surface diffuseness and coupling radius parameters for the reaction with spherical target, <sup>16</sup>O+<sup>144</sup>Sm systemcompared to the reaction that involves the deformed target, i.e., <sup>16</sup>O+<sup>154</sup>Sm system. In more detail, the results of coupled-channels calculations for the fusion and the quasi-elastic barrier distributions for deformed target are not sensitive to the choice of the coupling radius and surface diffuseness parameters. In mark contrast, the structure of the fusion and the quasi-elastic barrier distributions for spherical target are very sensitive to the coupling radius and surface diffuseness parameters. We found that the small surface diffuseness parameter smeared out the fusion barrier distributions and the larger coupling radius smoothed the high energy peak of the quasi-elastic barrier distributions. We also found that the larger coupling radius, , is required by the experimental quasi-elastic barrier distribution for the <sup>16</sup>O+<sup>144</sup>Sm system whereas the experimental fusion barrier distribution compulsory the small value, i.e., .


2019 ◽  
Vol 28 (07) ◽  
pp. 1950052
Author(s):  
Rajni ◽  
Manoj K. Sharma

The effect of diffuseness of nucleus–nucleus interaction potential is tested on the nuclear potential depth, barrier characteristics and fusion excitation functions by considering spherical+spherical and [Formula: see text] colliding partners. It is manifested from the calculations that fusion barrier height and fusion pocket depth get significantly modified with change in diffuseness parameter [Formula: see text] and deeper fusion pocket appears with an increase in the magnitude of diffuseness. We further observed that, depending on the value of [Formula: see text], the fusion pocket depth decreases more sharply for the reactions involving oblate target [Formula: see text] as compared to prolate [Formula: see text] systems, though the overall shift in the pocket (left or right) is almost equal i.e., [Formula: see text]0.5[Formula: see text]fm for both cases. Furthermore, the effect of diffuseness on fusion cross-section is such that, on taking both spherical and/or deformed target-projectile combinations, lower strength of nuclear surface diffuseness (0.60[Formula: see text]fm) seems more suitable upto charge product [Formula: see text] [Formula: see text]200. However, for [Formula: see text], higher value of diffuseness parameter (0.99[Formula: see text]fm) is desirable for systems with spherical as well as deformed target-projectile combinations. Finally, we have explored the effect of angle dependence on the nuclear surface diffuseness within [Formula: see text]C+[Formula: see text]Tb reaction. The study reveals the significant contribution of angular diffuseness in fusion cross-section of reactions involving lanthanide target.


Sign in / Sign up

Export Citation Format

Share Document