filter material
Recently Published Documents


TOTAL DOCUMENTS

428
(FIVE YEARS 134)

H-INDEX

20
(FIVE YEARS 5)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0257963
Author(s):  
John G. Yuen ◽  
Amy C. Marshilok ◽  
Peter Todd Benziger ◽  
Shan Yan ◽  
Jeronimo Cello ◽  
...  

In times of crisis, including the current COVID-19 pandemic, the supply chain of filtering facepiece respirators, such as N95 respirators, are disrupted. To combat shortages of N95 respirators, many institutions were forced to decontaminate and reuse respirators. While several reports have evaluated the impact on filtration as a measurement of preservation of respirator function after decontamination, the equally important fact of maintaining proper fit to the users’ face has been understudied. In the current study, we demonstrate the complete inactivation of SARS-CoV-2 and preservation of fit test performance of N95 respirators following treatment with dry heat. We apply scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS), X-ray diffraction (XRD) measurements, Raman spectroscopy, and contact angle measurements to analyze filter material changes as a consequence of different decontamination treatments. We further compared the integrity of the respirator after autoclaving versus dry heat treatment via quantitative fit testing and found that autoclaving, but not dry heat, causes the fit of the respirator onto the users face to fail, thereby rendering the decontaminated respirator unusable. Our findings highlight the importance to account for both efficacy of disinfection and mask fit when reprocessing respirators to for clinical redeployment.


2021 ◽  
Author(s):  
Max Fraenkl ◽  
Milos Krbal ◽  
Jakub Houdek ◽  
Zuzana Olmrova Zmrhalova ◽  
Borivoj Prokes ◽  
...  

Proper respiratory tract protection is the key factor to limiting the rate of COVID-19 spread and providing a safe environment for health care workers. Traditional N95 (FFP2) respirators are not easy to regenerate and thus create certain financial and ecological burdens; moreover, their quality may vary significantly. A solution that would overcome these disadvantages is desirable. In this study a commercially available knit polyester fleece fabric was selected as the filter material, and a total of 25 filters of different areas and thicknesses were prepared. Then, the size-resolved filtration efficiency (40-400 nm) and pressure drop were evaluated at a volumetric flow rate of 95 L/min. We showed the excellent synergistic effect of expanding the filtration area and increasing the number of filtering layers on the filtration efficiency; a filter cartridge with 8 layers of knit polyester fabric with a surface area of 900 cm2 and sized 25 x 14 x 8 cm achieved filtration efficiencies of 98 % at 95 L/min and 99.5 % at 30 L/min. The assembled filter kit consists of a filter cartridge (14 Pa) carried in a small backpack connected to a half mask with a total pressure drop of 84 Pa at 95 L/min. In addition, it is reusable, and the filter material can be regenerated at least ten times by simple methods, such as boiling. We have demonstrated a novel approach for creating high-quality and easy-to-breathe-through respiratory protective equipment that reduces operating costs and is a green solution because it is easy to regenerate.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7853
Author(s):  
Yan Luo ◽  
Zhongyun Shen ◽  
Zhihao Ma ◽  
Hongfeng Chen ◽  
Xiaodong Wang ◽  
...  

A silicon dioxide/polytetrafluoroethylene/polyethyleneimine/polyphenylene sulfide (SiO2/PTFE/PEI/PPS) composite filter medium with three-dimensional network structures was fabricated by using PPS nonwoven as the substrate which was widely employed as a cleanable filter medium. The PTFE/PEI bilayers were firstly coated on the surfaces of the PPS fibers through the layer-by-layer self-assembly technique ten times, followed by the deposition of SiO2 nanoparticles, yielding the SiO2/(PTFE/PEI)10/PPS composite material. The contents of the PTFE component were easily controlled by adjusting the number of self-assembled PTFE/PEI bilayers. As compared with the pure PPS nonwoven, the obtained SiO2/(PTFE/PEI)10/PPS composite material exhibits better mechanical properties and enhanced wear, oxidation and heat resistance. When employed as a filter material, the SiO2/(PTFE/PEI)10/PPS composite filter medium exhibited excellent filtration performance for fine particulate. The PM2.5 (particulate matter less than 2.5 μm) filtration efficiency reached up to 99.55%. The superior filtration efficiency possessed by the SiO2/(PTFE/PEI)10/PPS composite filter medium was due to the uniformly modified PTFE layers, which played a dual role in fine particulate filtration. On the one hand, the PTFE layers not only increase the specific surface area and pore volume of the composite filter material but also narrow the spaces between the fibers, which were conducive to forming the dust cake quickly, resulting in intercepting the fine particles more efficiently than the pure PPS filter medium. On the other hand, the PTFE layers have low surface energy, which is in favor of the detachment of dust cake during pulse-jet cleaning, showing superior reusability. Thanks to the three-dimensional network structures of the SiO2/(PTFE/PEI)10/PPS composite filter medium, the pressure drop during filtration was low.


2021 ◽  
Vol 9 (12) ◽  
pp. 1424
Author(s):  
Dongrui Ruan ◽  
Jiawang Chen ◽  
Hao Wang ◽  
Xiaoqing Peng ◽  
Peng Zhou ◽  
...  

The unique environment of the hadal zone has created material circulation patterns and biological gene characteristics. Microbes play an irreplaceable role in the ocean ecological environment and material circulation due to their pervasiveness, abundance, and metabolic diversity. In this paper, we designed and developed a microbial sampling device that can be used in a depth of 10,000 m, with its working parts suitable for the full-sea depth. The multi-stage membrane realized the in situ multi-stage filtrations. The samples were in situ fixedly preserved by RNAlater storage solution. At the same time, we modeled and calculated the multi-stage membrane separation and filtration process, simulated the interception phenomenon of particles with different sizes passing through the multi-stage membrane area, and explored the influence of varying inlet velocities. A multi-stage membrane separation and filtration test system was built. The operational characteristics of different filters were compared and analyzed, and the appropriate filter material was selected according to the flow capacity and physical properties. A 100 MPa high-pressure test was carried out to check the device’s performance under a high-pressure environment. The sampler prototype was constructed and tested in the Mariana Trench. The results indicated that the device could work at the deepest point of the Mariana trench.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7166
Author(s):  
Tadeusz Dziubak ◽  
Leszek Bąkała ◽  
Sebastian Dominik Dziubak ◽  
Kamil Sybilski ◽  
Michał Tomaszewski

Pollutant properties in intake air to internal combustion engines were analyzed. Mineral dust particles’ influence on accelerated engine components’ wear was discussed. Dust concentration values in the air under various operating conditions in trucks and special vehicles were presented. The idea and necessity for using two-stage filters, operating in a “multi-cyclone–porous partition” system for vehicles operated in dusty air conditions, are presented. Information from the literature information has been presented, showing that impurities in small grain sizes reduce fiber bed absorbency. It has been shown that such a phenomenon occurs during filter material operation, located directly behind the inertial filter (multi-cyclone), which off-road vehicles are equipped with. It results in a greater pressure drop intensity increase and a shorter proper filter operation period. It has been shown that filter material selection for the motor vehicle air filter requires knowledge of the mass of stopped dust per filtration unit area (dust absorption coefficient km) determined for a given permissible resistance value Δpfdop. It has been shown that there is no information on absorption coefficient values for filter materials operating in a two-stage “multi-cyclone–porous partition” separation system. Original methodology and conditions for determining dust absorption coefficient (km) of a separation partition, operating under the conditions of two-stage filtration, were presented. The following characteristics were tested: separation efficiency, filtration performance, and pressure drop characteristics of three different filtration partitions. These were A (cellulose), B (cellulose and polyester), and C (cellulose, polyester, and nanofibers layer), working individually and in a two-stage system—behind the cyclone. Granulometric dust composition dosed into the cyclone and cyclone downstream was determined. During tests, conditions corresponding to air filter’s actual operating conditions, including separation speed and dust concentration in the air, were maintained. For the pressure drop values, the dust absorption coefficient (km) values of three different filtration partitions (A, B, and C), working individually and in a two-stage system—behind the cyclone—were determined experimentally.


Author(s):  
Chengbao Liu ◽  
Minjia Li ◽  
Xiaojie Liu ◽  
Zhigang Chen

We reviewed the research on super-hydrophobic materials. Firstly, we introduced the basic principles of super-hydrophobic materials, including the Young equation, Wenzel model, and Cassie model. Then, we summarized the main preparation methods and research results of super-hydrophobic materials, such as the template method, soft etching method, electrospinning method, and sol-gel method. Among them, the electrospinning method that has developed in recent years is a new technology for preparing micro/nanofibers. Finally, the applications of super-hydrophobic materials in the field of coatings, fabric and filter material, anti-fogging, and antibacterial were introduced, and the problems existing in the preparation of super-hydrophobic materials were pointed out, such as unavailable industrialized production, high cost, and poor durability of the materials. Therefore, it is necessary to make a further study on the application of the materials in the selection, preparation, and post-treatment.


2021 ◽  
Author(s):  
Kulyash Meiramkulova ◽  
Timoth Mkilima ◽  
Aliya Темirbekova ◽  
Elmira Bukenova ◽  
Abdilda Meirbekov ◽  
...  

Direct utilization of treated effluent from natural treatment systems for irrigation can be challenging on sensitive plants due to high levels of salinity. Post-treatment of such an effluent prior to its applicability in irrigation can be of significant importance. In this study, the wastewater from a natural treatment plant was treated using a lab-scale filtration system with zeolite as a filter material. Three different column depths (0.5 m, 0.75 m, and 1 m) were used to investigate the effect of column depth on the treatment efficiency of the media. The suitability of the raw wastewater and the treated effluent from each column for irrigation purposes was investigated. The water quality parameters investigated were; electrical conductivity (EC), total dissolved solids (TDS), sodium (Na+), calcium (Ca2+), and magnesium (Mg2+). From the analysis results, it was observed that the column depth had a significant influence on the removal efficiency of the pollutants. Where the removal efficiency was observed to be increasing with the increase in the column depth. The highest removal efficiency (94.58%) was achieved from the combination of electrical conductivity and 1 m column depth, while the lowest removal efficiency (10.05%) was observed from the combination of calcium and 0.5 m column depth. The raw wastewater fell mostly into a “very high” hazard, which is class four (C4) based on electrical conductivity and class four (S4) based sodium adsorption ratio; making it unsuitable for irrigation purposes. However, the status improved after the treatment using different column depths.


Separations ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 193
Author(s):  
Christian Straube ◽  
Jörg Meyer ◽  
Achim Dittler

The identification of microscale oil structures formed from deposited oil droplets on the filter front face of a coalescence filter medium is essential to understand the initial state of the coalescence filtration process. Using µ-CT imaging and a deep learning tool for segmentation, this work presents a novel approach to visualize and identify deposited oil structures as oil droplets on fibers or oil sails between adjacent fibers of different sizes, shapes and orientations. Furthermore, the local and global porosity, saturation and fiber ratios of different fiber material of the oleophilic filter medium was compared and evaluated. Especially the local and global porosity of the filter material showed great accordance. Local and global saturation as well as the fiber ratios on local and global scale had noticeable differences which can mainly be attributed to the small field of view of the µ-CT scan (350 µm on 250 µm) or the minimal resolution of approximately 1 µm. Finally, fiber diameters of the investigated filter material were analyzed, showing a good agreement with the manufacturer’s specifications. The analytical approach to visualize and analyze the deposited oil structures was the main emphasis of this work.


2021 ◽  
Vol 3 ◽  
pp. e17
Author(s):  
Bhanu Bhakta Neupane ◽  
Basant Giri

Respiratory protection devices such as face masks and respirators minimize the transmission of infectious diseases by providing a physical barrier to respiratory virus particles. The level of protection from a face mask and respirator depends on the nature of filter material, the size of infectious particle, breathing and environmental conditions, facial seal, and user compliance. The ongoing COVID‒19 pandemic has resulted in the global shortage of surgical face mask and respirator. In such a situation, significant global populations have either reused the single‒use face mask and respirator or used a substandard face mask fabricated from locally available materials. At the same time, researchers are actively exploring filter materials having novel functionalities such as antimicrobial, enhanced charge holding, and heat regulating properties to design potentially better face mask. In this work, we reviewed research papers and guidelines published primarily in last decade focusing on, (a) virus filtering efficiency, (b) impact of type of filter material on filtering efficiency, (c) emerging technologies in mask design, and (d) decontamination approaches. Finally, we provide future prospective on the need of novel filter materials and improved design.


Sign in / Sign up

Export Citation Format

Share Document