pheromonal communication
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 10)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kota Ezaki ◽  
Takashi Yamashita ◽  
Thomas Carle ◽  
Hidehiro Watanabe ◽  
Fumio Yokohari ◽  
...  

AbstractAlthough praying mantises rely mainly on vision for predatory behaviours, olfaction also plays a critical role in feeding and mating behaviours. However, the receptive processes underlying olfactory signals remain unclear. Here, we identified olfactory sensory neurons (OSNs) that are highly tuned to detect aldehydes in the mantis Tenodera aridifolia. In extracellular recordings from OSNs in basiconic sensilla on the antennae, we observed three different spike shapes, indicating that at least three OSNs are housed in a single basiconic sensillum. Unexpectedly, one of the three OSNs exhibited strong excitatory responses to a set of aldehydes. Based on the similarities of the response spectra to 15 different aldehydes, the aldehyde-specific OSNs were classified into three classes: B, S, and M. Class B broadly responded to most aldehydes used as stimulants; class S responded to short-chain aldehydes (C3–C7); and class M responded to middle-length chain aldehydes (C6–C9). Thus, aldehyde molecules can be finely discriminated based on the activity patterns of a population of OSNs. Because many insects emit aldehydes for pheromonal communication, mantises might use aldehydes as olfactory cues for locating prey habitat.


2020 ◽  
Vol 16 (12) ◽  
pp. 20200440
Author(s):  
Carlos Antônio Mendes Cardoso-Junior ◽  
Isobel Ronai ◽  
Klaus Hartfelder ◽  
Benjamin P. Oldroyd

Pheromones are used by many insects to mediate social interactions. In the highly eusocial honeybee ( Apis mellifera ), queen mandibular pheromone (QMP) is involved in the regulation of the reproductive and other behaviour of workers. The molecular mechanisms by which QMP acts are largely unknown. Here, we investigate how genes responsible for epigenetic modifications to DNA, RNA and histones respond to the presence of QMP in the environment. We show that several of these genes are upregulated in the honeybee brain when workers are exposed to artificial QMP. We propose that pheromonal communication systems, such as those used by social insects, evolved to respond to environmental signals by making use of existing epigenomic machineries.


2020 ◽  
Author(s):  
Yao-Hua Zhang ◽  
Lei Zhao ◽  
Shi-Hui Fu ◽  
Zhen-Shan Wang ◽  
Jian-Xu Zhang

Abstract Pheromonal communication plays a key role in the sociosexual behavior of rodents. The coadaptation between pheromones and chemosensory systems has been well illustrated in insects but poorly investigated in rodents and other mammals. We aimed to investigate whether coadaptation between male pheromones and female reception might have occurred in brown rats Rattus norvegicus. We recently reported that major urinary protein (MUP) pheromones are associated with male mating success in a brown rat subspecies, R. n. humiliatus (Rnh). Here, we discovered that MUPs were less polymorphic and occurred at much lower concentrations in males of a parapatric subspecies, R. n. caraco (Rnc), than in Rnh males, and found no association between pheromones and paternity success. Moreover, the observation of Rnc males that experienced chronic dyadic encounters and established dominance–submission relationships revealed that the dominant males achieved greater mating success than the subordinate males, but their MUP levels did not differ by social status. These findings suggest that male mating success in Rnc rats is related to social rank rather than to pheromone levels and that low concentration of MUPs might not be a reliable signal for mate choice in Rnc rats, which is different from the findings obtained in Rnh rats. In addition, compared with Rnh females, Rnc females exhibited reduced expression of pheromone receptor genes, and a lower number of vomeronasal receptor neurons were activated by MUP pheromones, which imply that the female chemosensory reception of pheromones might be structurally and functionally coadapted with male pheromone signals in brown rats.


2020 ◽  
pp. 105971232091893
Author(s):  
Seongin Na ◽  
Yiping Qiu ◽  
Ali E Turgut ◽  
Jiří Ulrich ◽  
Tomáš Krajník ◽  
...  

Pheromones are chemical substances released into the environment by an individual animal, which elicit stereotyped behaviours widely found across the animal kingdom. Inspired by the effective use of pheromones in social insects, pheromonal communication has been adopted to swarm robotics domain using diverse approaches such as alcohol, RFID tags and light. COSΦ is one of the light-based artificial pheromone systems which can emulate realistic pheromones and environment properties through the system. This article provides a significant improvement to the state-of-the-art by proposing a novel artificial pheromone system that simulates pheromones with environmental effects by adopting a model of spatio-temporal development of pheromone derived from a flow of fluid in nature. Using the proposed system, we investigated the collective behaviour of a robot swarm in a bio-inspired aggregation scenario, where robots aggregated on a circular pheromone cue with different environmental factors, that is, diffusion and pheromone shift. The results demonstrated the feasibility of the proposed pheromone system for use in swarm robotic applications.


Author(s):  
Matthew Cobb

‘Smell signals’ looks at pheromones—chemical substances released by animals that cause a specific reaction in another of their species. The clearest examples of pheromonal communication come from insects, including bees, moths, and fruit flies. Scientists have found it harder to identify pheromones in vertebrates. There is chemical communication between animals, and examples of pheromonal signalling in mice, goats, and rabbits. For pheromone evolution to occur, both stimulus and receptor must change simultaneously. Pheromones are generally not proteins, so are not directly affected by genes. While humans are quick to accept the idea that they have pheromones, there is no decisive evidence.


2020 ◽  
Author(s):  
Carlos Antônio Mendes Cardoso-Junior ◽  
Isobel Ronai ◽  
Klaus Hartfelder ◽  
Benjamin P. Oldroyd

AbstractPheromones are used by many insects to mediate social interactions. In the highly eusocial honeybee (Apis mellifera) queen mandibular pheromone (QMP) is involved in the regulation of reproduction and behaviour of workers. The molecular mechanisms by which QMP acts are largely unknown. Here we investigate how genes responsible for epigenetic modifications to DNA, RNA and histones respond to the presence of QMP. We show that several of these genes are upregulated in the honeybee brain when workers are exposed to QMP. This provides a plausible mechanism by which pheromone signalling may influence gene expression in the brain of honeybee workers. We propose that pheromonal communication systems, such as those used by social insects, evolved to respond to environmental signals by making use of existing epigenomic machineries.


2019 ◽  
Author(s):  
Jérôme Cortot ◽  
Jean-Pierre Farine ◽  
Benjamin Houot ◽  
Claude Everaerts ◽  
Jean-François Ferveur

ABSTRACTSex specific traits are involved in speciation but it is difficult to determine whether their variation initiates or reinforces sexual isolation. In some insects, speciation depends of the rapid change of expression in desaturase genes coding for sex pheromones. Two closely related desaturase genes are involved inDrosophila melanogasterpheromonal communication:desat1affects both the production and the reception of sex pheromones whiledesat2is involved in their production in flies of Zimbabwe populations. There is a strong asymmetric sexual isolation between Zimbabwe populations and all other “Cosmopolitan” populations: Zimbabwe females rarely copulate with Cosmopolitan males whereas Zimbabwe males readily copulate with all females. All populations expressdesat1but only Zimbabwe strains show highdesat2expression. To evaluate the impact of sex pheromones, female receptivity anddesatexpression on the incipient speciation process between Zimbabwe and Cosmopolitan populations, we introgressed the Zimbabwe genome into a Cosmopolitan genome labelled with thewhitemutation, using a multi-generation procedure. The association between these sex-specific traits was determined during the procedure. The production of pheromones was largely dissociated between the sexes. The copulation frequency (but not latency) was highly correlated with the female—but not with the male—principal pheromones. We finally obtained two stablewhitelines showing Zimbabwe-like sex pheromones, copulation discrimination anddesatexpression. Our study indicates that the variation of sex pheromones and of mating discrimination depend of distinct—yet overlapping—sets of genes in each sex suggesting that their cumulated effects participate to reinforce the speciation process.


2019 ◽  
Vol 63 (8-9-10) ◽  
pp. 429-438 ◽  
Author(s):  
Tsuyoshi Araki ◽  
Tamao Saito

Dictyostelium is a microorganism found in soils that are known as the battle fields of chemical warfare. Genome analysis of Dictyostelium revealed that it has great potential for the production of small molecules, including secondary metabolites such as polyketides and terpenes.Polyketides are a large family of secondary metabolites which have a variety of structures. In accordance with their structural variety, polyketides have a plethora of biological activities, including antimicrobial, antifungal, and antitumor activities. Unsurprisingly, they have exceptional medical importance. Polyketides in nature work as protective compounds and /or function in pheromonal communication. Terpenes belong to another family of structurally diverse secondary metabolites which play roles in ecological interactions, including defence against predators and formation of mutually beneficial alliance with other organisms. Polyketides and terpenes work as intra- or inter-species signalling compounds, i.e. they play the role of a chemical language. However, in Dictyostelium, they work as paracrine signalling compounds which control the organism’s multicellular morphogenesis. This review is primarily focused on the small molecules that regulate pattern formation in the slug stage of the organism and their biosynthetic pathways. Current in vivo understandings of polyketide DIF-1 induced cell differentiation and DIF-1-dependent/independent pathways are also discussed.


Sign in / Sign up

Export Citation Format

Share Document