scholarly journals WEAK AND STRONG CONVERGENCE THEOREMS OF ALGORITHMIC SCHEMES FOR THE MULTIPLE-SETS SPLIT FEASIBILITY PROBLEM

2021 ◽  
Vol 226 (15) ◽  
pp. 28-35
Author(s):  
Nguyễn Bường ◽  
Nguyễn Dương Nguyễn

Trong bài báo này, để giải bài toán chấp nhận tách đa tập (MSSFP) trong không gian Hilbert, chúng tôi trình bày một cách tiếp cận tổng quát để xây dựng các phương pháp lặp. Chúng tôi đề xuất một lược đồ thuật toán xâu trung bình với sự hội tụ yếu và một lược đồ thuật toán xâu trung bình với sự hội tụ mạnh. Lược đồ thuật toán xâu trung bình với sự hội tụ mạnh được xây dựng dựa trên phương pháp lặp tổng quát cho ánh xạ không giãn, trong đó cỡ bước được tính toán trực tiếp trong mỗi bước lặp mà không cần sử dụng chuẩn của toán tử. Những lược đồ thuật toán này không chỉ bao hàm những cải tiến của phương pháp lặp vòng và lặp đồng thời đã biết như những trường hợp riêng mà còn bao hàm cả những phương pháp lặp mới

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hasanen A. Hammad ◽  
Habib ur Rehman ◽  
Yaé Ulrich Gaba

The goal of this manuscript is to establish strong convergence theorems for inertial shrinking projection and CQ algorithms to solve a split convex feasibility problem in real Hilbert spaces. Finally, numerical examples were obtained to discuss the performance and effectiveness of our algorithms and compare the proposed algorithms with the previous shrinking projection, hybrid projection, and inertial forward-backward methods.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 892
Author(s):  
Xuejiao Zi ◽  
Zhaoli Ma ◽  
Wei-Shih Du

In this paper, we establish new strong convergence theorems of proposed algorithms under suitable new conditions for the generalized split feasibility problem in Banach spaces. As applications, new strong convergence theorems for equilibrium problems, fixed point problems and split common fixed point problems are also studied. Our new results are distinct from recent results on the topic in the literature.


Author(s):  
Chibueze C. Okeke ◽  
Lateef O. Jolaoso ◽  
Yekini Shehu

Abstract In this paper, we propose two inertial accelerated algorithms which do not require prior knowledge of operator norm for solving split feasibility problem with multiple output sets in real Hilbert spaces. We prove weak and strong convergence results for approximating the solution of the considered problem under certain mild conditions. We also give some numerical examples to demonstrate the performance and efficiency of our proposed algorithms over some existing related algorithms in the literature.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Kanyanee Saechou ◽  
Atid Kangtunyakarn

Abstract In this paper, we first introduce the two-step intermixed iteration for finding the common solution of a constrained convex minimization problem, and also we prove a strong convergence theorem for the intermixed algorithm. By using our main theorem, we prove a strong convergence theorem for the split feasibility problem. Finally, we apply our main theorem for the numerical example.


2015 ◽  
Vol 31 (3) ◽  
pp. 349-357
Author(s):  
ABDUL RAHIM KHAN ◽  
◽  
MUJAHID ABBAS ◽  
YEKINI SHEHU ◽  
◽  
...  

We establish strong convergence result of split feasibility problem for a family of quasi-nonexpansive multi-valued mappings and a total asymptotically strict pseudo-contractive mapping in infinite dimensional Hilbert spaces.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Huijuan Jia ◽  
Shufen Liu ◽  
Yazheng Dang

The paper proposes an inertial accelerated algorithm for solving split feasibility problem with multiple output sets. To improve the feasibility, the algorithm involves computing of projections onto relaxed sets (half spaces) instead of computing onto the closed convex sets, and it does not require calculating matrix inverse. To accelerate the convergence, the algorithm adopts self-adaptive rules and incorporates inertial technique. The strong convergence is shown under some suitable conditions. In addition, some newly derived results are presented for solving the split feasibility problem and split feasibility problem with multiple output sets. Finally, numerical experiments illustrate that the algorithm converges more quickly than some existing algorithms. Our results extend and improve some methods in the literature.


Sign in / Sign up

Export Citation Format

Share Document