surface signaling
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 7)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Ru Li ◽  
Tiantian Li ◽  
Genzhe Lu ◽  
Zhi Cao ◽  
Bowen Chen ◽  
...  

Abstract Cell surface signaling landscapes are formidably complex. Robust tools capable of manipulating the spatiotemporal distribution of cell surface proteins (CSPs) for dissecting signaling are in high demand. Some CSPs are regulated via multivalency-driven liquid-liquid phase separation (LLPS). Employing the robustness and versatility of LLPS, we decided to engineer LLPS-based tools for precisely manipulating CSPs. We generated membrane-tethering LLPS systems by fusing multivalent modular phase separation scaffold pairs with CSP binders. Phase separation of the scaffold pairs, concomitant compartmentalization of CSPs on membranes, and cluster-dependent signaling outputs of CSPs require membrane recruitment of one or both scaffolds. We also engineered orthogonal phase separation systems to segregate CSPs into mutually exclusive compartments. The engineered phase separation systems can robustly cluster individual CSPs, co-cluster two or more CSPs, or segregate different CSPs into distinct compartments on cell surfaces. These novel tools will enable the dissection of complicated cell signaling landscapes with unprecedented precision.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3288
Author(s):  
Preeti Kumari Chaudhary ◽  
Soochong Kim

G-protein-coupled receptors (GPCRs) are the largest family of cell surface signaling receptors known to play a crucial role in various physiological functions, including tumor growth and metastasis. Various molecules such as hormones, lipids, peptides, and neurotransmitters activate GPCRs that enable the coupling of these receptors to highly specialized transducer proteins, called G-proteins, and initiate multiple signaling pathways. Integration of these intricate networks of signaling cascades leads to numerous biochemical responses involved in diverse pathophysiological activities, including cancer development. While several studies indicate the role of GPCRs in controlling various aspects of cancer progression such as tumor growth, invasion, migration, survival, and metastasis through its aberrant overexpression, mutations, or increased release of agonists, the explicit mechanisms of the involvement of GPCRs in cancer progression is still puzzling. This review provides an insight into the various responses mediated by GPCRs in the development of cancers, the molecular mechanisms involved and the novel pharmacological approaches currently preferred for the treatment of cancer. Thus, these findings extend the knowledge of GPCRs in cancer cells and help in the identification of therapeutics for cancer patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dagmar Hromadová ◽  
Aleš Soukup ◽  
Edita Tylová

Responsiveness to environmental conditions and developmental plasticity of root systems are crucial determinants of plant fitness. These processes are interconnected at a cellular level with cell wall properties and cell surface signaling, which involve arabinogalactan proteins (AGPs) as essential components. AGPs are cell-wall localized glycoproteins, often GPI-anchored, which participate in root functions at many levels. They are involved in cell expansion and differentiation, regulation of root growth, interactions with other organisms, and environmental response. Due to the complexity of cell wall functional and regulatory networks, and despite the large amount of experimental data, the exact molecular mechanisms of AGP-action are still largely unknown. This dynamically evolving field of root biology is summarized in the present review.


2021 ◽  
Vol 22 (8) ◽  
pp. 4123
Author(s):  
Chih-Wei Lin ◽  
Richard A. Lerner

Most antibodies currently in use have been selected based on their binding affinity. However, nowadays, antibodies that can not only bind but can also alter the function of cell surface signaling components are increasingly sought after as therapeutic drugs. Therefore, the identification of such functional antibodies from a large antibody library is the subject of intensive research. New methods applied to combinatorial antibody libraries now allow the isolation of functional antibodies in the cellular environment. These selected agonist antibodies have provided new insights into important issues of signal transduction. Notably, when certain antibodies bind to a given receptor, the cell fate induced by them may be the same or different from that induced by natural agonists. In addition, combined with phenotypic screening, this platform allows us to discover unexpected experimental results and explore various phenomena in cell biology, such as those associated with stem cells and cancer cells.


2020 ◽  
Vol 8 (7) ◽  
pp. 1013
Author(s):  
Oleksandr Kolyvushko ◽  
Maximilian A. Kelch ◽  
Nikolaus Osterrieder ◽  
Walid Azab

Viruses utilize host cell signaling to facilitate productive infection. Equine herpesvirus type 1 (EHV-1) has been shown to activate Ca2+ release and phospholipase C upon contact with α4β1 integrins on the cell surface. Signaling molecules, including small GTPases, have been shown to be activated downstream of Ca2+ release, and modulate virus entry, membrane remodeling and intracellular transport. In this study, we show that EHV-1 activates the small GTPases Rac1 and Cdc42 during infection. The activation of Rac1 and Cdc42 is necessary for virus-induced acetylation of tubulin, effective viral transport to the nucleus, and cell-to-cell spread. We also show that inhibitors of Rac1 and Cdc42 did not block virus entry, but inhibited overall virus infection. The Rac1 and Cdc42 signaling is presumably orthogonal to Ca2+ release, since Rac1 and Cdc42 inhibitors affected the infection of both EHV-1 and EHV-4, which do not bind to integrins.


2020 ◽  
Vol 295 (17) ◽  
pp. 5795-5806 ◽  
Author(s):  
Jaime L. Jensen ◽  
Beau D. Jernberg ◽  
Sangita C. Sinha ◽  
Christopher L. Colbert

Cell-surface signaling (CSS) in Gram-negative bacteria involves highly conserved regulatory pathways that optimize gene expression by transducing extracellular environmental signals to the cytoplasm via inner-membrane sigma regulators. The molecular details of ferric siderophore-mediated activation of the iron import machinery through a sigma regulator are unclear. Here, we present the 1.56 Å resolution structure of the periplasmic complex of the C-terminal CSS domain (CCSSD) of PupR, the sigma regulator in the Pseudomonas capeferrum pseudobactin BN7/8 transport system, and the N-terminal signaling domain (NTSD) of PupB, an outer-membrane TonB-dependent transducer. The structure revealed that the CCSSD consists of two subdomains: a juxta-membrane subdomain, which has a novel all-β-fold, followed by a secretin/TonB, short N-terminal subdomain at the C terminus of the CCSSD, a previously unobserved topological arrangement of this domain. Using affinity pulldown assays, isothermal titration calorimetry, and thermal denaturation CD spectroscopy, we show that both subdomains are required for binding the NTSD with micromolar affinity and that NTSD binding improves CCSSD stability. Our findings prompt us to present a revised model of CSS wherein the CCSSD:NTSD complex forms prior to ferric-siderophore binding. Upon siderophore binding, conformational changes in the CCSSD enable regulated intramembrane proteolysis of the sigma regulator, ultimately resulting in transcriptional regulation.


2019 ◽  
Vol 204 ◽  
pp. 43-49 ◽  
Author(s):  
Marta Cuenca ◽  
Jordi Sintes ◽  
Árpád Lányi ◽  
Pablo Engel

2019 ◽  
Vol 316 (5) ◽  
pp. R525-R534 ◽  
Author(s):  
Zachary R. Shaheen ◽  
Benjamin S. Christmann ◽  
Joshua D. Stafford ◽  
Jason M. Moran ◽  
R. Mark L. Buller ◽  
...  

Double-stranded (ds) RNA, both synthetic and produced during virus replication, rapidly stimulates MAPK and NF-κB signaling that results in expression of the inflammatory genes inducible nitric oxide synthase, cyclooxygenase 2, and IL-1β by macrophages. Using biochemical and genetic approaches, we have identified the chemokine ligand-binding C-C chemokine receptor type 5 (CCR5) as a cell surface signaling receptor required for macrophage expression of inflammatory genes in response to dsRNA. Activation of macrophages by synthetic dsRNA does not require known dsRNA receptors, as poly(inosinic:cytidylic) acid [poly(I:C)] activates signaling pathways leading to expression of inflammatory genes to similar levels in wild-type and Toll-like receptor 3- or melanoma differentiation antigen 5-deficient macrophages. In contrast, macrophage activation in response to poly(I:C) is attenuated in macrophages isolated from mice lacking CCR5. These findings support a role for CCR5 as a cell surface signaling receptor that participates in activation of inflammatory genes in macrophages in response to the viral dsRNA mimetic poly(inosinic:cytidylic) acid by pathways that are distinct from classical dsRNA receptor-mediated responses.


Author(s):  
Chloé Sauzay ◽  
Konstantinos Voutetakis ◽  
Aristotelis Chatziioannou ◽  
Eric Chevet ◽  
Tony Avril

Sign in / Sign up

Export Citation Format

Share Document