interparticle porosity
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 10)

H-INDEX

4
(FIVE YEARS 1)

Author(s):  
Mohamed Said Abbas ◽  
Antonin Fabbri ◽  
Mohammed Yacine Ferroukhi ◽  
Philippe Glé ◽  
Emmanuel Gourdon ◽  
...  

Bio-based materials are an environmentally friendly alternative to classic construction materials, yet their generally low density can lead to poor acoustic properties. The acoustic performance of hemp shiv and sunflower pith composites is therefore analyzed using Kundt’s tube. Although the loose aggregates present an exceptional sound absorbing behavior, it can be notably worsened in the presence of certain binders. The Transmission Loss is nevertheless enhanced by the binders, although it does not exceed 20 dB in most cases. For both properties, the type of binder has been found to be the most influential parameter. Through the Kundt’s tube method, it is also possible to determine the geometrical parameters of the composites’ microstructure, which have been observed to be similar for materials presenting comparable hygrothermal properties and containing the same binder. In a previous work, an experimental correlation was found between the thermal conductivity and the interparticle porosity of the aforementioned composites, which is compared to theoretical thermal conductivity models from literature without finding any apparent correspondence.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1523
Author(s):  
Elena Mihalcea ◽  
Luis Olmos ◽  
Héctor Vergara-Hernández ◽  
Omar Jimenez ◽  
Jorge Chávez ◽  
...  

A detailed experimental and numerical investigation was performed on a Ti6Al4V/xCoCrMo biomedical composite for bone implant applications. The aim was to understand the effect generated by the addition of different volume fractions of CoCrMo particles on a Ti6Al4V matrix composite processed by powder metallurgy. Distribution of CoCrMo particles inside a matrix was observed by computed microtomography. Three-dimensional image analysis allowed for the deduction that the mechanism that permitted percolation within the powder mixture was the cluster formation at 30 vol.% of CoCrMo and at a coordination number of Co–Co contacts of 2.8, which confirms existing models. Densification during powder compaction was driven by larger indentations at the Ti–Co contacts for lower quantities of CoCrMo than for those reaching percolation. Sintering was studied by dilatometry tests at 1130 °C, and results indicated that solid-state sintering generated the formation of a rigid skeleton. This endured the stress generated by the eutectic reaction liquid, which filled the interparticle porosity, resulting in relative densities above 90%. Microstructure was analyzed by SEM and X-ray diffraction, and results showed a Ti6Al4V matrix surrounded by a Ti2Co eutectic phase. In addition, the hardness of composites increased up to three times compared to the Ti6Al4V alloy. It was concluded that the best properties were obtained from 20 vol.% of CoCrMo.


2021 ◽  
Author(s):  
Susanna Jansat ◽  
Mercè Moncusí

Abstract Emulating natural dynamism distributing earth minerals using diffusion and gravity, herein it is reported a strategy to unite nanostructured materials of similar size but intrinsic physical repellence, magnetite guest bestowed with C18 alkyl chain ligands and highly hydrophilic ammonium dawsonite NH4Al(OH)2CO3 host, based in electromagnetic and chemical forces. Notwithstanding augmented polarity of nanostructured surface’s carrier, has been used as fine-tuning tool in conjunction with continuum, for triggering a disseminated array of specific interactions covering entire carrier NH4+-RDW-NP periphery. Strong interactions heighten enthalpic contributions balancing unfavourable entropic penalty. Shelter adsorbs diffused guest like conventional Fe3O4-NP dispersions but additionally, whether restricts void’s access or, sinters carrier enabling isolation of a second morphology where magnetite is quantitatively embedded into cavities left between agglomerates. Reported deposition protocol extends sort of practical interactions beyond the known dipole-dipole derived ones, to ion-p and truly chemical coordination bonds, strengthening wetting interfaces that define noticeable g-Al2O3 crystalline domains at minor temperatures. Manuscript illustrates how certain organic media may assist to reliable guest depositions in, hydrotalcite to alumina carriers within controlled morphology, at the same weight level than common procedures reported for more akin host/guest. Interestingly, protocol enables practical SBET measurements for solids with significative contributions of interparticle porosity. Detrimental effects are also addressed.


2021 ◽  
Author(s):  
David Cruset ◽  
Jaume Vergés ◽  
Anna Tarvé

<p>Recently, U-Pb dating of fracture-filling carbonates has revealed as a powerful tool to constrain the absolute timing of deformation in fold and thrust belts. However, geochronological studies of these minerals have to be combined with petrological observations and geochemical analyses to decipher if measured dates document fluid flow synchronously to deformation or post-kinematic events.</p><p>The Pyrenean compressional belt formed from Late Cretaceous to Oligocene due to the stacking of three thrust sheets and a deformed foreland basin. From top-and-older to bottom-and-younger, these consist of the Bóixols-Upper Pedraforca, Lower Pedraforca and Cadí thrust sheets and the Ebro foreland basin. Here, we quantify the duration of thrust sheet emplacement and shortening rates in the SE Pyrenees using U-Pb dating of 43 calcites filling fractures and interparticle porosity.</p><p>Four fracture sets related to compressional tectonics and one set related to extension are identified. The compressive sets include: 1) N-S, NNW-SSE and NNE-SSW trending veins; 2) E-W trending folding-related veins; 3) E-W trending reverse faults; and 4) NW-SE and NE-SW trending strike-slip faults. Fractures related to extension are NNW-SSE and NW-SE trending normal faults.</p><p>Elongated blocky, blocky and bladed calcite textures of the dated cements are observed. Elongated textures are observed in reverse, strike-slip and normal faults and occasionally in N-S, NNW-SSE and NNE-SSW and E-W veins. In these fractures, calcite crystals are arranged parallel, oblique, or perpendicular to fracture walls and provide evidence for syn-kinematic growth. Blocky and bladed textures have been identified in N-S, NNW-SSE and NNE-SSW veins, E-W folding-related veins, reverse and strike-slip faults and in calcite precipitated between sedimentary breccia clasts. Although these textures indicate precipitation after vein opening or at lower rates than vein opening, their presence in crack-seal veins and in stepped slickensides also indicates syn-kinematic growth. Moreover, clumped isotope temperatures measured in several blocky and bladed calcites precipitated in veins and faults indicate that most of them precipitated from fluids in thermal disequilibrium with host rocks, revealing rapid fluid flow and precipitation just after fracturing. Contrarily, low temperatures measured in blocky and bladed calcite precipitated in the interparticle porosity of sedimentary breccias indicate late fluid migration.</p><p>U-Pb dating applied to fracture-filling calcites in the SE Pyrenean fold and thrust belt yielded 46 ages from 70.6 ± 0.9 Ma to 2.8 ± 1.8 Ma (Cruset et al., 2020). The results reveal minimum durations for the emplacement of each thrust sheet (18.7 Myr for the Bóixols-Upper Pedraforca, 11.6 Myr for the Lower Pedraforca and 14.3 Myr for the Cadí), and that piggy-back thrusting was accompanied by post-emplacement deformation of upper thrust units above the lower ones during tectonic transport. These estimated durations, combined with the minimum shortening established for the Bóixols-Upper Pedraforca, Lower Pedraforca and Cadí thrust sheets by other methods, allows calculating shortening rates of 0.6 mm/yr, 3.1 mm/yr and 1.1 mm/yr, respectively. Finally, the results also reveal the development of local normal faults at late Oligocene times during the final stages of compression and exhumation.</p><p><strong>References:</strong></p><p><strong>Cruset et al. (2020)</strong>. Geological Society of London. 177, 1186-1196.</p>


2020 ◽  
pp. 1353-1361
Author(s):  
Mena Jamal Faisal ◽  
Thamer A. Mahdi

Diagenetic processes and types of pores that control the reservoir properties are studied for Mauddud Formation in selected wells of Badra oil field, central Iraq. The microscopic study of the thin sections shows the effects of micritization, cementation, neomorphism, dissolution, dolomitization, compaction, and fracturing on Mauddud Formation carbonate microfacies. The decrease of porosity is resulted from cementation, compaction, and neomorphism. Different types of calcite cement occlude pore spaces such as drusy cement, syntaxial rim cement, and granular (blocky) cement. The neomorphism of micritic matrix and skeletal grains reduces porosity as indicated by development of microspar or pseudospar. Evidence of decreasing porosity by compaction includes closer packing of grains, which reduces interparticle porosity. Dissolution process has prominent effect in creating and increasing the effective porosity in different depositional textures of Mauddud Formation. Reservoir properties are increased in grain-supported microfacies, which have vuggy porosity or primary porosity, whose pore size differs depending on the size of the grains. The reservoir properties in the mud-supported microfacies are reduced due to the low occurrence of pores and their lack of connectivity if they exist.


2019 ◽  
Vol 13 (1) ◽  
pp. 88-100 ◽  
Author(s):  
Jhony Willian Vargas-Solórzano ◽  
José Luis Ramírez Ascheri ◽  
Carlos Wanderlei Piler Carvalho ◽  
Cristina Yoshie Takeiti ◽  
Melicia Cintia Galdeano

2019 ◽  
Author(s):  
Tatiana A. Maryutina ◽  
Elena Yu. Savonina ◽  
Petr S. Fedotov ◽  
Roger M. Smith ◽  
Heli Siren ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document