focussed ion beam
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 15)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Vol 33 (4) ◽  
pp. 503-517
Author(s):  
Fernando Nieto ◽  
Isabel Abad ◽  
Blanca Bauluz ◽  
Matías Reolid

Abstract. Glauconite and celadonite coexist at the nanometre scale in Early Jurassic submarine volcanic rocks of the Betic Cordillera (southern Spain) as a result of microbial activity. Samples from the limit between the two micas, recognizable in scanning electron microscopy, have been extracted using the focussed ion beam technique and studied by high-resolution analytical electron microscopy. Both micas are present as randomly oriented differentiated small crystals in the boundary area. They define clearly distinct compositional fields with gaps affecting to Fe, Mg and K. At the lattice scale, celadonite shows a high degree of order, with homogeneous orientation of the visible lattice parameters being a difference from glauconite, formed by packets no more than 10-layers thick. Smectite layers were also detected alongside glauconite packets, in accordance with X-ray diffractograms which indicate that glauconite is a mica–smectite interstratification being more than 90 % mica layers. The compositional gap indicates that celadonite is not the endmember of the glauconitic series and the two micas represent two different structural tendencies of mica, with glauconite having more distorted octahedral sheets, indicated by systematically higher b parameters than celadonite.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. L. Mitchell ◽  
P. Davies ◽  
P. Kenrick ◽  
T. Volkenandt ◽  
C. Pleydell-Pearce ◽  
...  

AbstractCorrelative imaging provides a method of investigating complex systems by combining analytical (chemistry) and imaging (tomography) information across dimensions (2D-3D) and scales (centimetres-nanometres). We studied weathering processes in a modern cryptogamic ground cover from Iceland, containing early colonizing, and evolutionary ancient, communities of mosses, lichens, fungi, and bacteria. Targeted multi-scale X-ray Microscopy of a grain in-situ within a soil core revealed networks of surficial and internal features (tunnels) originating from organic-rich surface holes. Further targeted 2D grain characterisation by optical microscopy (OM), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (SEM–EDS), following an intermediate manual correlative preparation step, revealed Fe-rich nodules within the tunnels. Finally, nanotomographic imaging by focussed ion beam microscopy (FIB-SEM) revealed coccoid and filamentous-like structures within subsurface tunnels, as well as accumulations of Fe and S in grain surface crusts, which may represent a biological rock varnish/glaze. We attribute these features to biological processes. This work highlights the advantages and novelty of the correlative imaging approach, across scales, dimensions, and modes, to investigate biological weathering processes. Further, we demonstrate correlative microscopy as a means of identifying fingerprints of biological communities, which could be used in the geologic rock record and on extra-terrestrial bodies.


2021 ◽  
pp. 111194
Author(s):  
J.R. Famelton ◽  
G.M. Hughes ◽  
C.A. Williams ◽  
C. Barbatti ◽  
M.P. Moody ◽  
...  

Author(s):  
Abhishek Kumar ◽  
Sudhir Husale ◽  
Himanshu Pandey ◽  
Mahesh Gaurav Yadav ◽  
Majid Yousuf ◽  
...  

2021 ◽  
Author(s):  
Rich Taylor

<p>The proliferation of modern techniques available for petrologists has resulted in an explosion of detailed information on mineral compositions and processes over the last decade. One area of research that is undergoing dramatic advances is the non-destructive interrogation of samples in three dimensions through X-ray microscopy (XRM). Techniques such as ZEISS Versa and Ultra XRM can be performed at a variety of scales and resolutions, resulting in micro-to-nano scale information on geological samples. Such techniques can be correlated with each other i.e. expanding nanoscale resolution to a large sample or internal calibration of X-ray intensity to identify mineral assemblages, or even correlation with other techniques such as electron microscopy (EM). X-ray techniques are also particularly adaptable to digital resolution enhancements through software processes such as machine learning algorithms.</p><p>Collecting 3D information for petrological investigations can often require ground truthing of mineralogical and compositional interpretations. The more developed the 3D microscopy becomes, the more we are increasingly interested in features that are deeply buried within our samples. This means the corresponding techniques for excavating a region of interest also need to advance in both speed and accuracy.</p><p>The ZEISS Crossbeam-Laser (XBL) system provides a unique capability of rapidly excavating to a point of interest within a 3D sample volume. The XBL is already seeing use in material sciences, with a standard XB chamber with focussed Ion Beam (FIB) and Electron Microscopy (EM), and a correlated femtosecond laser chamber for rapid material removal. Sample data collected through XRM can be correlated to the XBL stage so that any internal features located by XRM have their coordinates automatically available in three dimensions. The femtosecond laser can excavate to a region of interest (RoI) within the sample within seconds or minutes, dramatically reducing preparation time compared to standard FIB/PFIB. The laser cut surface can be used for analysis techniques such as energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD), even prior to final polishing with the focussed ion beam (FIB).</p><p>Here we show the XRM-XBL workflow in high grade metamorphic rocks for identifying minerals in context for geochronology and micro-to-nano scale textures.</p>


2021 ◽  
Vol 281 (2) ◽  
pp. 109-111
Author(s):  
D. A. M. de Winter ◽  
C. D. J. Parmenter

Solid Earth ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 1-14
Author(s):  
Arne Jacob ◽  
Markus Peltz ◽  
Sina Hale ◽  
Frieder Enzmann ◽  
Olga Moravcova ◽  
...  

Abstract. Computer X-ray microtomography (µXCT) represents a powerful tool for investigating the physical properties of porous rocks. While calculated porosities determined by this method typically match experimental measurements, computed permeabilities are often overestimated by more than 1 order of magnitude. This effect increases towards smaller pore sizes, as shown in this study, in which nanostructural features related to clay minerals reduce the permeability of tight reservoir sandstone samples. Focussed ion beam scanning electron microscopy (FIB-SEM) tomography was applied to determine the permeability effects of illites at the nanometre scale, and Navier–Stokes equations were applied to calculate the permeability of these domains. With these data, microporous domains (porous voxels) were defined using microtomography images of a tight reservoir sample. The distribution of these domains could be extrapolated by calibration against size distributions measured in FIB-SEM images. For this, we assumed a mean permeability for the dominant clay mineral (illite) in the rock and assigned it to the microporous domains within the structure. The results prove the applicability of our novel approach by combining FIB-SEM with X-ray tomographic rock core scans to achieve a good correspondence between measured and simulated permeabilities. This methodology results in a more accurate representation of reservoir rock permeability in comparison to that estimated purely based on µXCT images.


2020 ◽  
Vol 11 ◽  
pp. 1504-1515
Author(s):  
Matthew R Ball ◽  
Richard J M Taylor ◽  
Joshua F Einsle ◽  
Fouzia Khanom ◽  
Christelle Guillermier ◽  
...  

The helium ion microscope (HIM) is a focussed ion beam instrument with unprecedented spatial resolution for secondary electron imaging but has traditionally lacked microanalytical capabilities. With the addition of the secondary ion mass spectrometry (SIMS) attachment, the capabilities of the instrument have expanded to microanalysis of isotopes from Li up to hundreds of atomic mass units, effectively opening up the analysis of all natural and geological systems. However, the instrument has thus far been underutilised by the geosciences community, due in no small part to a lack of a thorough understanding of the quantitative capabilities of the instrument. Li represents an ideal element for an exploration of the instrument as a tool for geological samples, due to its importance for economic geology and a green economy, and the difficult nature of observing Li with traditional microanalytical techniques. Also Li represents a “best-case” scenario for isotopic measurements. Here we present details of sample preparation, instrument sensitivity, theoretical, and measured detection limits for both elemental and isotopic analysis as well as practicalities for geological sample analyses of Li alongside a discussion of potential geological use cases of the HIM–SIMS instrument.


2020 ◽  
Vol 10 (19) ◽  
pp. 6674
Author(s):  
Matteo Lilli ◽  
Fabrizio Sarasini ◽  
Lorenzo Di Fausto ◽  
Carlos González ◽  
Andrea Fernández ◽  
...  

The disposal of fibre reinforced composite materials is a problem widely debated in the literature. This work explores the ability to restore the mechanical properties of thermally conditioned basalt fibres through chemical treatments. Inorganic acid (HF) and alkaline (NaOH) treatments proved to be effective in regenerating the mechanical strength of recycled basalt fibres, with up to 94% recovery of the strength on treatment with NaOH. In particular, HF treatment proved to be less effective compared to NaOH, therefore pointing towards a more environmentally sustainable approach considering the disposal issues linked to the use of HF. Moreover, the strength regeneration was found to be dependent on the level of temperature experienced during the thermal treatment process, with decreasing effectiveness as a function of increasing temperature. SEM analysis of the fibres’ lateral surfaces suggests that surface defects removal induced by the etching reaction is the mechanism controlling recovery of fibre mechanical properties. In addition, studies on the fracture toughness of the regenerated single fibres were carried out, using focussed ion beam (FIB) milling technique, to investigate whether any structural change in the bulk fibre occurred after thermal exposure and chemical regeneration. A significant increase in the fracture toughness for the regenerated fibres, in comparison with the as-received and heat-treated basalt ones, was measured.


2020 ◽  
Vol 126 (6) ◽  
Author(s):  
Priscila Romagnoli ◽  
Maki Maeda ◽  
Jonathan M. Ward ◽  
Viet Giang Truong ◽  
Síle Nic Chormaic
Keyword(s):  
Ion Beam ◽  

Sign in / Sign up

Export Citation Format

Share Document