drake passage
Recently Published Documents


TOTAL DOCUMENTS

513
(FIVE YEARS 99)

H-INDEX

50
(FIVE YEARS 4)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Shuzhuang Wu ◽  
Lester Lembke-Jene ◽  
Frank Lamy ◽  
Helge W. Arz ◽  
Norbert Nowaczyk ◽  
...  

Abstract Four state-of-the-science numerical weather prediction (NWP) models were used to perform mountain wave- (MW) resolving hind-casts over the Drake Passage of a 10-day period in 2010 with numerous observed MW cases. The Integrated Forecast System (IFS) and the Icosahedral Nonhydrostatic (ICON) model were run at Δx ≈ 9 and 13 km globally. TheWeather Research and Forecasting (WRF) model and the Met Office Unified Model (UM) were both configured with a Δx = 3 km regional domain. All domains had tops near 1 Pa (z ≈ 80 km). These deep domains allowed quantitative validation against Atmospheric InfraRed Sounder (AIRS) observations, accounting for observation time, viewing geometry, and radiative transfer. All models reproduced observed middle-atmosphere MWs with remarkable skill. Increased horizontal resolution improved validations. Still, all models underrepresented observed MW amplitudes, even after accounting for model effective resolution and instrument noise, suggesting even at Δx ≈ 3 km resolution, small-scale MWs are under-resolved and/or over-diffused. MWdrag parameterizations are still necessary in NWP models at current operational resolutions of Δx ≈ 10 km. Upper GW sponge layers in the operationally configured models significantly, artificially reduced MW amplitudes in the upper stratosphere and mesosphere. In the IFS, parameterized GW drags partly compensated this deficiency, but still, total drags were ≈ 6 time smaller than that resolved at Δx ≈ 3 km. Meridionally propagating MWs significantly enhance zonal drag over the Drake Passage. Interestingly, drag associated with meridional fluxes of zonal momentum (i.e. ) were important; not accounting for these terms results in a drag in the wrong direction at and below the polar night jet.


2021 ◽  
Vol 9 (12) ◽  
pp. 1379
Author(s):  
Fenlian Wang ◽  
Gaowen He ◽  
Xiguang Deng ◽  
Yong Yang ◽  
Jiangbo Ren

Rare earth elements and yttrium (REY) are widely recognized as strategic materials for advanced technological applications. Deep-sea sediments from the eastern South Pacific and central North Pacific were first reported as potential resources containing significant amounts of REY that are comparable to, or greater than, those of land-based deposits. Despite nearly a decade of research, quantitative abundances and spatial distributions of these deposits remain insufficient. Age controls are generally absent due to the lack of biostratigraphic constraints. Thus, the factors controlling the formation of REY-rich sediments are still controversial. In this study, the REY contents of surface sediments (<2 m depth) in 14 piston cores from the Middle and Western Pacific were investigated. The results show that deep-sea sediments with high REY contents (>1000 μg/g) were mainly concentrated around seamounts (e.g., the Marshall Islands). The REY contents of surface sediments generally decreased with distance from the seamounts. Biostratigraphic and fish teeth debris (apatite) Sr isotopic stratigraphy of one piston cores (P10) from the Middle Pacific indicate that deep-sea sediments with high REY contents were aged from early Oligocene to early Miocene. Since the opening of the Drake Passage during the early Oligocene, the northward-flowing Antarctic Bottom Water (AABW) would have led to an upwelling of nutrients around seamounts with topographic barriers, and at the same time, AABW would delay the rate of sediment burial to try for enough time for REY entering and enriching in the apatite (fish teeth debris). Understanding the spatial distribution of fertile regions for REY-rich sediments provides guidance for searching for other REY resources in the Pacific and in other oceans.


2021 ◽  
Vol 59 (6) ◽  
pp. 1731-1753
Author(s):  
Norikatsu Akizawa ◽  
Asuka Yamaguchi ◽  
Kenichiro Tani ◽  
Akira Ishikawa ◽  
Ryo Fujita ◽  
...  

ABSTRACT The continental margin is of profound importance as it records continental growth by accretion of orogenic magmas and following continental rifting. A high degree of mantle melting due to hydrous fluid input is expected to simultaneously stimulate continental growth and lower the intrinsic density of the mantle than more fertile mantle, which in turn isolates the continental lithosphere from the convective mantle. The mantle peridotites from Gibbs Island (South Shetland Islands) and Bruce Bank in the Drake Passage provide us an insight into the tectonic history in the circum-Antarctic region. To elucidate the continental growth of Antarctica, we present geochemical data of eight dunites from Gibbs Island and one dunite from Bruce Bank, including Re–Os isotope and highly siderophile element compositions. The dunites are severely affected by serpentinization as evidenced by antigorite + brucite or lizardite (loss on ignition = LOI ranging from 3 to 34 wt.%) but contain primary euhedral to subhedral chromites with or without spherical inclusions. The chromites rarely form lens-shaped aggregates. A dunite from Gibbs Island contains fresh olivine grains filling a fracture in the chromite with low LOI (3 wt.%), indicating a deserpentinization origin from a precursor serpentinized dunite. The dunites show highly depleted bulk-rock major element compositions (Mg/Si = 1.4–1.6 and Al/Si = 0.004–0.01 for Gibbs Island dunites, Mg/Si = 0.66 and Al/Si = 0.008 for Bruce Bank dunite), overlapping a compositional field defined by forearc peridotites. The positive correlation in Re/Ir–LOI space corroborates Re input during the later serpentinization process. The 187Os/188Os ratios of the dunites range from 0.11907 to 0.14493. Phanerozoic Re-depletion (melt depletion) ages of ca. 535–129 Ma are recorded in the Gibbs Island dunites, except for one with a Mesoproterozoic Re-depletion age of ca. 1.2 Ga. Since there exists serpentinization-related perturbation of Re, the ages provide minimum time estimates for melt depletion events. The early Paleozoic melt depletion is inferred to have occurred at a very early stage of Antarctic Peninsula formation in response to plate convergence along the margin of Gondwana, whereas the Mesoproterozoic Re-depletion age reflects convecting mantle heterogeneity unrelated to any nearby crust-forming events. The petrographic characteristics of the chromites and highly depleted nature of the dunites are attributed to melt–peridotite reaction in a subduction zone setting. A feasible interpretation for the dunite formation is that the mantle had experienced two stages of melting with the final stage occurring along the Gondwana continental margin in the subduction zone setting. Resultant highly refractory lithospheric mantle was later displaced and dispersed during the Gondwana breakup. Widespread existence of the dunite may be attributed to multi-stage melt depletion along the continental margin.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Miklós Vincze ◽  
Tamás Bozóki ◽  
Mátyás Herein ◽  
Ion Dan Borcia ◽  
Uwe Harlander ◽  
...  

AbstractPronounced global cooling around the Eocene–Oligocene transition (EOT) was a pivotal event in Earth’s climate history, controversially associated with the opening of the Drake Passage. Using a physical laboratory model we revisit the fluid dynamics of this marked reorganization of ocean circulation. Here we show, seemingly contradicting paleoclimate records, that in our experiments opening the pathway yields higher values of mean water surface temperature than the “closed” configuration. This mismatch points to the importance of the role ice albedo feedback plays in the investigated EOT-like transition, a component that is not captured in the laboratory model. Our conclusion is supported by numerical simulations performed in a global climate model (GCM) of intermediate complexity, where both “closed” and “open” configurations were explored, with and without active sea ice dynamics. The GCM results indicate that sea surface temperatures would change in the opposite direction following an opening event in the two sea ice dynamics settings, and the results are therefore consistent both with the laboratory experiment (slight warming after opening) and the paleoclimatic data (pronounced cooling after opening). It follows that in the hypothetical case of an initially ice-free Antarctica the continent could have become even warmer after the opening, a scenario not indicated by paleotemperature reconstructions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wojciech Majewski ◽  
Maria Holzmann ◽  
Andrew J. Gooday ◽  
Aneta Majda ◽  
Tomasz Mamos ◽  
...  

AbstractThe Antarctic coastal fauna is characterized by high endemism related to the progressive cooling of Antarctic waters and their isolation by the Antarctic Circumpolar Current. The origin of the Antarctic coastal fauna could involve either colonization from adjoining deep-sea areas or migration through the Drake Passage from sub-Antarctic areas. Here, we tested these hypotheses by comparing the morphology and genetics of benthic foraminifera collected from Antarctica, sub-Antarctic coastal settings in South Georgia, the Falkland Islands and Patagonian fjords. We analyzed four genera (Cassidulina, Globocassidulina, Cassidulinoides, Ehrenbergina) of the family Cassidulinidae that are represented by at least nine species in our samples. Focusing on the genera Globocassidulina and Cassidulinoides, our results showed that the first split between sub-Antarctic and Antarctic lineages took place during the mid-Miocene climate reorganization, probably about 20 to 17 million years ago (Ma). It was followed by a divergence between Antarctic species ~ 10 Ma, probably related to the cooling of deep water and vertical structuring of the water-column, as well as broadening and deepening of the continental shelf. The gene flow across the Drake Passage, as well as between South America and South Georgia, seems to have occurred from the Late Miocene to the Early Pliocene. It appears that climate warming during 7–5 Ma and the migration of the Polar Front breached biogeographic barriers and facilitated inter-species hybridization. The latest radiation coincided with glacial intensification (~ 2 Ma), which accelerated geographic fragmentation of populations, demographic changes, and genetic diversification in Antarctic species. Our results show that the evolution of Antarctic and sub-Antarctic coastal benthic foraminifera was linked to the tectonic and climatic history of the area, but their evolutionary response was not uniform and reflected species-specific ecological adaptations that influenced the dispersal patterns and biogeography of each species in different ways.


2021 ◽  
Author(s):  
Kyle Clem ◽  
Deniz Bozkurt ◽  
Daemon Kennett ◽  
John King ◽  
John Turner

Abstract The northern parts of the Larsen ice shelf, eastern Antarctic Peninsula (AP) have experienced dramatic break-up since the early 1990s as a result of strong summertime surface melt, which has been linked to stronger circumpolar westerly winds. Here we show extreme summertime surface melt and high temperatures over the eastern AP and Larsen C ice shelf occur because of enhanced deep convection in the central tropical Pacific, which produces cyclonic conditions across the middle and high-latitude South Pacific, and a strong high pressure anomaly over Drake Passage. Together these transport extreme heat and moisture from low latitudes to the AP, at times in the form of "atmospheric rivers", producing strong surface warming and melt on the Larsen ice shelf by the Foehn effect. Therefore, variability in central tropical Pacific convection is crucial for interpreting past and projecting future AP surface mass balance and extreme temperature events.


Sign in / Sign up

Export Citation Format

Share Document