distribution transformers
Recently Published Documents


TOTAL DOCUMENTS

887
(FIVE YEARS 197)

H-INDEX

24
(FIVE YEARS 4)

Author(s):  
Okorie N. S.

Abstract: This study evaluated the existing electric power network of Mile 2 Diobu zone, Port Harcourt distribution network which consists of four (4) 11kV distribution feeders namely; Ojoto, Nsukka, Udi and Silverbird. This work considered Ojoto and Nsukka Street distribution network for improved power quality. The three (3) 33/11kv injection substations are fed from 165 MVA transmission station (PH Town) at Amadi junction by Nzimiro. Collection and analysis of data collected from the injection substations that supply electricity to mile 2 Diobu, Port Harcourt was the first consideration. The distribution network was modeled in Electrical Transient Analyzer Program (ETAP) using Newton-Raphson Load Flow equations. The simulation result of the existing condition network shows that the network has low voltage profile problem on Nsukka network and overloading of distribution transformers on Ojoto networks. The following optimization techniques are applied: up-gradation of distribution transformers, and transformer load tap changer to improve the distribution network for Mile 2 Diobu, Port Harcourt electrical power network. The simulation result of the improved distribution network for Mile 2 Diobu, Port Harcourt power network shows that the voltage profile Nsukka network has improved within the statutory limit which is between 95.0 -105.0% and the loading of the distribution transformers on Ojoto and Nsukka networks are all below 70% required capacity. Keywords: Optimization, Energy Efficiency Distribution


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 13
Author(s):  
Jaroslaw Gielniak ◽  
Magdalena Czerniak

This work refers to the criterion values used to assess the state of the active part of the transformer based on the analysis of the effective value of the total vibration acceleration and the frequency spectrum. It was proved in the work that the criteria values should be differentiated for transformers of different rated power. Transformers with lower rated power are characterized by lower RMS values of vibration acceleration than units with higher rated power, which cannot remain without impact on the criteria values. Trend analysis of the total aRMS values may reveal increasing defects before the currently applicable criteria values are exceeded. In addition, the influence of the position of the sensor on the frequency spectrum of the obtained signals was analyzed. It was proved that the sensors should be mounted in the middle of the transformer tank, between its lower part and the cover. The dependence of RMS value of vibration acceleration on no-load losses was also determined for transformers of different types but the same rated power. This relationship will not have a large share in the total vibrations of the transformer, due to slight changes in the value of aRMS occurring for all analyzed units.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Ayman Agha ◽  
Hani Attar ◽  
Ashish Kr. Luhach

This paper presents an approach to achieve the Economic Loading of Distribution Transformer (ELDT) based on minimizing the active energy loss. The effects of the transformer on-load and no-load losses, load factor (LF), and load loss factor (LSF) on the total energy losses are considered. The adopted technique in this paper consists of two phases, where ELDT is determined analytically in the first phase, and the load profile adequated (LSF) is statistically obtained in the second one. The results declare that the proposed technique is suitable for the shifts system mode of operation such as in industrial plants. Moreover, this paper investigates the effect of the total active and reactive power and energy losses on ELDT. Finally, numerical examples with software analyses are performed as a valuable tool, which supports the decision-makers to decide trustfully the size of the transformer and its capacity (kVA) during the design stage, as well as to determine the economic loading during the operation based on the effective factors, that is, total power, energy losses, and the load profile.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammad Amin Sobouti ◽  
Mehdi Bigdeli ◽  
Davood Azizian

Purpose This paper aims to evaluate the effect of optimal use of rooftop photovoltaic (PV) systems on improving the loss of life (LOL) of distribution transformers, reducing power losses as well as the unbalance rate of the 69-bus distribution network. Design/methodology/approach The problem is studied in three scenarios, considering different objective functions as multi-objective optimization in balanced and unbalanced operations. Meta-heuristic golden ratio optimization method (GROM) is used to determine the optimal size of the rooftop PV in the network. Findings The simulation results show that in all scenarios, the GROM by optimally installing the rooftop PV is significantly capable to reduce the transformer distribution loss of loss, unbalance rate and power loss as well as reduce the temperature of the oil and transformer winding. Also, the lowest %LOL, power loss and unbalance rate occurred in the second scenario for the balanced network and first scenario, respectively. In addition, the results showed that the unbalance of the network results in increased power losses and LOL of the distribution transformer. Originality/value The better capability of GROM is proved compared with the grey wolf optimization algorithm with better objective function and by achieving better values of LOL, unbalance rate and power loss. The results also showed that the %LOL, unbalance and power losses are weakened compared to without considering the PV cost but the achieved results are realistic and cost-effective.


2021 ◽  
Author(s):  
Ramanuja Panigrahi ◽  
Santanu Mishra ◽  
Suresh C. Srivastava ◽  
Prasad Enjeti

<em>Realizing a smart Low Voltage Distribution System (LVDS) is essential to realize a smart grid. Restructuring the existing distribution system into microgrids is one important requirement to achieve a smart LVDS. The realization of microgrids in LVDS can take different shapes in different countries. This article discusses the challenges and practical solutions to realize a smart LVDS for radial distribution grids, which are common in India. The network following a distribution transformer can be distinguished as a microgrid for radial low voltage distribution grids. However, this leads to many operational issues. Therefore, this article envisions replacing the Low Voltage distribution transformers with <a>Solid-State Transformers </a>(SSTs). This will enable the LVDS to control the power exchange between the phases within a microgrid as well as power exchange between different microgrids. The architectural design of a smart home in smart LVDS is outlined to complete the discussion. Various unique features required for smart inverters in a smart home and existing grid codes to make them compatible with smart LVDS are also reviewed.</em><i></i>


2021 ◽  
Author(s):  
Ramanuja Panigrahi ◽  
Santanu Mishra ◽  
Suresh C. Srivastava ◽  
Prasad Enjeti

<em>Realizing a smart Low Voltage Distribution System (LVDS) is essential to realize a smart grid. Restructuring the existing distribution system into microgrids is one important requirement to achieve a smart LVDS. The realization of microgrids in LVDS can take different shapes in different countries. This article discusses the challenges and practical solutions to realize a smart LVDS for radial distribution grids, which are common in India. The network following a distribution transformer can be distinguished as a microgrid for radial low voltage distribution grids. However, this leads to many operational issues. Therefore, this article envisions replacing the Low Voltage distribution transformers with <a>Solid-State Transformers </a>(SSTs). This will enable the LVDS to control the power exchange between the phases within a microgrid as well as power exchange between different microgrids. The architectural design of a smart home in smart LVDS is outlined to complete the discussion. Various unique features required for smart inverters in a smart home and existing grid codes to make them compatible with smart LVDS are also reviewed.</em><i></i>


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7207
Author(s):  
Vicente León-Martínez ◽  
Clara Andrada-Monrós ◽  
Laura Molina-Cañamero ◽  
Jorge Cano-Martínez ◽  
Elisa Peñalvo-López

Well-known industrial practice efficiency improvement techniques, such as reactive compensation, load balancing, and harmonic filtering, are used in this paper to reduce energy losses in distribution transformers, and therefore, to decrease carbon dioxide emissions and economic costs in the operation of these transformers. Load balancing is carried out by monitoring the values of the angles of the active and reactive components of the vector unbalanced power. Likewise, the application of Order 3/2020 of the Spanish National Markets and Competition Commission is described, in detail, for the calculation of the economic costs derived from the transformer energy losses caused by the load currents and the penalties due to transformer energy deliveries with capacitive power factors. Finally, all these improvement techniques are applied to determine savings in carbon dioxide emissions and costs on the electricity bill of an actual 1000 kVA distribution transformer that supplies a commercial and night-entertainment area. The results of this application case reveal that cost reductions due to energy loss savings are modest, but the reduction in carbon dioxide emissions and the savings in penalties for capacitive reactive supplies are significant.


2021 ◽  
Vol 7 ◽  
pp. 4325-4334
Author(s):  
Ali Asghar Taheri ◽  
Ali Abdali ◽  
Mohammad Taghilou ◽  
Hassan Haes Alhelou ◽  
Kazem Mazlumi

Sign in / Sign up

Export Citation Format

Share Document