ampa and nmda receptors
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 12)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 13 ◽  
Author(s):  
Sampath Kumar ◽  
Sanjay S. Kumar

Glutamatergic AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and NMDA (N-methyl-D-aspartate) receptors are implicated in diverse functions ranging from synaptic plasticity to cell death. They are heterotetrameric proteins whose subunits are derived from multiple distinct gene families. The subunit composition of these receptors determines their permeability to monovalent and/or divalent cations, but it is not entirely clear how this selectivity arises in native and recombinantly-expressed receptor populations. By analyzing the sequence of amino acids lining the selectivity filters within the pore forming membrane helices (M2) of these subunits and by correlating subunit stoichiometry of these receptors with their ability to permeate Na+ and/or Ca2+, we propose here a mathematical model for predicting cation selectivity and permeability in these receptors. The model proposed is based on principles of charge attractivity and charge neutralization within the pore forming region of these receptors; it accurately predicts and reconciles experimental data across various platforms including Ca2+ permeability of GluA2-lacking AMPARs and ion selectivity within GluN3-containing di- and tri-heteromeric NMDARs. Additionally, the model provides insights into biophysical mechanisms regulating cation selectivity and permeability of these receptors and the role of various subunits in these processes.


Author(s):  
Hilal Ozturk ◽  
N. Yorulmaz ◽  
Mustafa Durgun ◽  
Harun Basoglu

Abstract Natural products from plants, such as flavonoids, arouse immense interest in medicine because of the therapeutic and many other bioactive properties. The molecular docking is a very useful method to screen the molecules based on their free binding energies and give important structural suggestions about how molecules might activate or inhibit the target receptor by comparing reference molecules. Alliin and Allicin differ from many other flavonoids because of containing no benzene rings and having nitrogen and sulfur atoms in their structure. In this study Alliin and Allicin affinity on AMPA, NMDA and GABA-A receptors were evaluated in the central nervous system by using the molecular docking method. Both Alliin and Allicin indicated no inhibitory effects. However Alliin showed significant selectivity to human AMPA receptor (3RN8) as an excitatory. The binding energy of glutamate to 3RN8 was -6.61 kcal/mol, while the binding energy of Allin was -8.08 kcal/mol. Furthermore Alliin’s affinity to the other AMPA and NMDA receptors is quite satisfactory compared to the reference molecule glutamate. In conclusion based on the molecular docking study, Alliin can be useful for synaptic plasticity studies whereas might be enhance seizure activity because of the increased permeability to cations. It also can be beneficial to improve learning and memory and can be used as a supportive product to the hypofunction of NMDA associated problems.


2021 ◽  
Author(s):  
Anca Radulescu ◽  
Cassandra Williams ◽  
Gabrielle Todd ◽  
Alex Lemus ◽  
Haley Chesbro ◽  
...  

Glutamate transporters preserve the spatial specificity of synaptic transmission by limiting glutamate diffusion away from the synaptic cleft, and prevent excitotoxicity by keeping the extracellular concentration of glutamate at low nanomolar levels. Glutamate transporters are abundantly expressed in astrocytes. Previous estimates in the rat hippocampus suggest that the surface density of glutamate transporters in astrocytic membranes is ~10,800 μm−2. Here, we estimate their surface density in astrocytic membranes of the mouse hippocampus, at different ages. By using realistic 3D Monte Carlo reaction-diffusion models, we show that varying the local glutamate transporter expression in astrocytes can alter profoundly the activation of extrasynaptic AMPA and NMDA receptors. Our findings show that the average density of astrocyte membranes and their surface density of glutamate transporters is higher in mice compared to rats, and increases with mouse age. There are stark differences in the density of expression of these molecules in different subcellular compartments, indicating that the extent to which astrocytes limit extrasynaptic glutamate diffusion depends not only on the level of astrocytic coverage, but also on the identity of the astrocyte compartment in contact with the synapse. Together, these findings provide information on the spatial distribution of glutamate transporters in the mouse hippocampus, which can be used in mathematical models of the spatiotemporal profile of extracellular glutamate after synaptic release.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rongkang Deng ◽  
Joseph P. Y. Kao ◽  
Patrick O. Kanold

AbstractThe development of GABAergic interneurons is important for the functional maturation of cortical circuits. After migrating into the cortex, GABAergic interneurons start to receive glutamatergic connections from cortical excitatory neurons and thus gradually become integrated into cortical circuits. These glutamatergic connections are mediated by glutamate receptors including AMPA and NMDA receptors and the ratio of AMPA to NMDA receptors decreases during development. Since previous studies have shown that retinal input can regulate the early development of connections along the visual pathway, we investigated if the maturation of glutamatergic inputs to GABAergic interneurons in the visual cortex requires retinal input. We mapped the spatial pattern of glutamatergic connections to layer 4 (L4) GABAergic interneurons in mouse visual cortex at around postnatal day (P) 16 by laser-scanning photostimulation and investigated the effect of binocular enucleations at P1/P2 on these patterns. Gad2-positive interneurons in enucleated animals showed an increased fraction of AMPAR-mediated input from L2/3 and a decreased fraction of input from L5/6. Parvalbumin-expressing (PV) interneurons showed similar changes in relative connectivity. NMDAR-only input was largely unchanged by enucleation. Our results show that retinal input sculpts the integration of interneurons into V1 circuits and suggest that the development of AMPAR- and NMDAR-only connections might be regulated differently.


2021 ◽  
Vol 12 (4) ◽  
pp. 766-781
Author(s):  
Giulia Fani ◽  
Benedetta Mannini ◽  
Giulia Vecchi ◽  
Roberta Cascella ◽  
Cristina Cecchi ◽  
...  

Biosystems ◽  
2020 ◽  
Vol 198 ◽  
pp. 104278
Author(s):  
Kouhei Hattori ◽  
Takeshi Hayakawa ◽  
Akira Nakanishi ◽  
Mihoko Ishida ◽  
Hideaki Yamamoto ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Gyutae Kim ◽  
Sangmin Lee ◽  
Kyu-Sung Kim

Vestibular nucleus (VN) and cerebellar flocculus are known as the core candidates for the neuroplasticity of vestibular system. However, it has been still elusive how to induce the artificial neuroplasticity, especially caused by an electrical stimulation, and assess the neuronal information related with the plasticity. To understand the electrically induced neuroplasticity, the neuronal potentials in VN responding to the repeated electrical stimuli were examined. Galvanic vestibular stimulation (GVS) was applied to excite the neurons in VN, and their activities were measured by an extracellular neural recording technique. Thirty-eight neuronal responses (17 for the regular and 21 for irregular neurons) were recorded and examined the potentials before and after stimulation. Two-third of the population (63.2%, 24/38) modified the potentials under the GVS repetition before stimulation (p=0.037), and more than half of the population (21/38, 55.3%) changed the potentials after stimulation (p=0.209). On the other hand, the plasticity-related neuronal modulation was hardly observed in the temporal responses of the neurons. The modification of the active glutamate receptors was also investigated to see if the repeated stimulation changed the number of both types of glutamate receptors, and the results showed that AMPA and NMDA receptors decreased after the repeated stimuli by 28.32 and 16.09%, respectively, implying the modification in the neuronal amplitudes.


2020 ◽  
Vol 152 (7) ◽  
Author(s):  
Timothy J. Wilding ◽  
James E. Huettner

AMPA and NMDA receptors are ligand-gated ion channels that depolarize postsynaptic neurons when activated by the neurotransmitter L-glutamate. Changes in the distribution and activity of these receptors underlie learning and memory, but excessive change is associated with an array of neurological disorders, including cognitive impairment, developmental delay, and epilepsy. All of the ionotropic glutamate receptors (iGluRs) exhibit similar tetrameric architecture, transmembrane topology, and basic framework for activation; conformational changes induced by extracellular agonist binding deform and splay open the inner helix bundle crossing that occludes ion flux through the channel. NMDA receptors require agonist binding to all four subunits, whereas AMPA and closely related kainate receptors can open with less than complete occupancy. In addition to conventional activation by agonist binding, we recently identified two locations along the inner helix of the GluK2 kainate receptor subunit where cysteine (Cys) substitution yields channels that are opened by exposure to cadmium ions, independent of agonist site occupancy. Here, we generate AMPA and NMDA receptor subunits with homologous Cys substitutions and demonstrate similar activation of the mutant receptors by Cd. Coexpression of the auxiliary subunit stargazin enhanced Cd potency for activation of Cys-substituted GluA1 and altered occlusion upon treatment with sulfhydryl-reactive MTS reagents. Mutant NMDA receptors displayed voltage-dependent Mg block of currents activated by agonist and/or Cd as well as asymmetry between Cd effects on Cys-substituted GluN1 versus GluN2 subunits. In addition, Cd activation of each Cys-substituted iGluR was inhibited by protons. These results, together with our earlier work on GluK2, reveal a novel mechanism shared among the three different iGluR subtypes for prying open the gate that controls ion entry into the pore.


2020 ◽  
Vol 44 (2) ◽  
pp. 169-179
Author(s):  
Liye Zou ◽  
Qian Yu ◽  
Shijie Liu ◽  
Paul D. Loprinzi

Objective: There is suggestive evidence that exercise may have a greater effect on visuo-spatial memory, compared to other memory types. However, we have a limited understanding as to the mechanisms through which exercise may subserve visuo-spatial memory. Thus, the purpose of this review is to evaluate the extent to which exercise may influence visuo-spatial memory, whether exercise can attenuate drug- and diseased-induced declines in memory, and determine the underlying mechanisms of these relationships. Methods: We employed a systematic review approach. We identified studies using electronic databases, including PubMed, PsychInfo, Sports Discus and Google Scholar. Results: In total, we identified 32 articles. Among these, 2 were among humans and 30 were conducted in animal models. There was strong evidence sup- porting the facilitative role of chronic exercise in visuo-spatial memory improvements, as well as attenuation of drug- and diseased-induced memory decline. There are various mechanisms through which chronic exercise may influence visuo-spatial memory, including increased neuro-genesis, angiogenesis, improved neural efficiency, CB1 receptor signaling, activation of H2 receptors, and increased number of synaptic structures (eg, AMPA and NMDA receptors). Conclusion: Exercise may help to enhance visuo-spatial memory.


Sign in / Sign up

Export Citation Format

Share Document