Abstract
Due to the failure of thermodynamics for low temperature near-extremal black holes, it has long been conjectured that a "thermodynamic mass gap'' exists between an extremal black hole and the lightest near-extremal state. For non-supersymmetric near-extremal black holes in Einstein gravity with an AdS2 throat, no such gap was found. Rather, at that energy scale, the spectrum exhibits a continuum of states, up to non-perturbative corrections. In this paper, we compute the partition function of near-BPS black holes in supergravity where the emergent, broken, symmetry is PSU(1,1|2). To reliably compute this partition function, we show that the gravitational path integral can be reduced to that of a N=4 supersymmetric extension of the Schwarzian theory, which we define and exactly quantize. In contrast to the non-supersymmetric case, we find that black holes in supergravity have a mass gap and a large extremal black hole degeneracy consistent with the Bekenstein-Hawking area. Our results verify a plethora of string theory conjectures, concerning the scale of the mass gap and the counting of extremal micro-states.