low humidity
Recently Published Documents


TOTAL DOCUMENTS

806
(FIVE YEARS 212)

H-INDEX

48
(FIVE YEARS 9)

2022 ◽  
Vol 317 ◽  
pp. 126159
Author(s):  
Bo Wu ◽  
Xue Ma ◽  
Hao Deng ◽  
Yuxiang Li ◽  
Yi Xiang ◽  
...  

2021 ◽  
Vol 14 (6) ◽  
pp. 3592
Author(s):  
Haylla Rebeka De Albuquerque Lins Leonardo ◽  
Camila Oliveira de Britto Salgueiro ◽  
Débora Natália Oliveira de Almeida ◽  
Sylvana Melo dos Santos ◽  
Leidjane Maria Maciel de Oliveira

O Sertão Pernambucano é caracterizado por longos períodos de secas, com um regime pluviométrico inconstante e irregular, dificultando o desenvolvimento socioeconômico da região. Neste contexto a aplicação de técnica de Sensoriamento Remoto utilizando de imagens georreferenciadas destaca-se pela relevância no monitoramento e análise da variação da cobertura vegetal e do suprimento hídrico nos reservatórios da região. Este estudo objetivou-se em avaliar as variações temporais geoespacializadas do uso e ocupação do solo, vegetação e área superficial do espelho d’água do reservatório de Poço da Cruz - PE, em uma perspectiva espectro temporal utilizando imagens datadas de 2000, 2013 e 2020, aplicando os índices espectrais MNDWI, NDWI, SAVI, IAF, dos sistemas sensores TM Landsat 5 e OLI Landsat 8, e ferramentas do projeto MAPBIOMAS da coleção 5.0. A análise do MNDWI identificou o aumento na área superficial do reservatório ao longo dos anos, ressaltando que os anos de 2000 e 2013 apresentaram um maior estresse hídrico com redução dos valores do índice. Os índices NDWI, SAVI e IAF, apontaram uma cobertura vegetal escassa e seca com baixa umidade para os anos de 2000 e 2013, entretanto, observou-se o aumento do vigor vegetativo e presença de maior umidade para o ano de 2020. Condizente com os dados obtidos para o uso e ocupação do solo pelo projeto MAPBIOMAS, indicando que houve um aumento das áreas destinadas a agricultura e pastagem no entorno do reservatório entre os anos de 2000 e 2013, bem como o incremento do seu espelho d´água.   Analysis of the Temporal Variability of Water Body in the Backwoods of the Pernambuco A B S T R A C TThe Sertão Pernambucano is characterized by long periods of drought, with an unstable and irregular rainfall regime, which hinders the socioeconomic development of the region. In this context, the application of the Remote Sensing technique using georeferenced images stands out for its relevance in monitoring and analyzing the variation in vegetation cover and water supply in the region's reservoirs. This study aimed to evaluate the geospatial temporal variations of the use and occupation of the soil, vegetation and surface area of the water mirror of the Poço da Cruz reservoir - PE, in a temporal spectrum perspective using images dated from 2000, 2013 and 2020, applying the spectral indices MNDWI, NDWI, SAVI, IAF, from the TM Landsat 5 and OLI Landsat 8 sensor systems, and tools from the MapBiomas project from the 5.0 collection. The MNDWI analysis identified the increase in the surface area of the reservoir over the years, noting that the years 2000 and 2013 showed greater water stress with a reduction in the index values. The NDWI, SAVI and IAF indexes indicated a sparse and dry vegetation cover with low humidity for the years 2000 and 2013, however, there was an increase in vegetative vigor and the presence of higher humidity for the year 2020. data obtained for land use and occupation by the MapBiomas project, indicating that there was an increase in areas for agriculture and pasture around the reservoir between 2000 and 2013, as well as an increase in its water surface.Keywords: biophysical indices; water resource; remote sensing.


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 33
Author(s):  
Han-Nui Gil ◽  
Trieu-Vuong Dinh ◽  
Jee-Hyun Lee ◽  
Byeong-Gyu Park ◽  
In-Young Choi ◽  
...  

A high humidity at a high temperature presents a common challenge in monitoring the air pollutants emitted from stationary sources. Thus, humidity removal is a pivotal issue. In this study, the effect of humidity pretreatment devices (HPDs) on hydrogen chloride (HCl) gas emitted from an incinerator stack was investigated. A conventional cooler (HPD_CL), and poly-tube (HPD_NP) and single-tube (HPD_NS) Nafion™ dryers were used as HPDs in this study. HCl concentrations varied at five and 10 parts per million in volume (ppmv). Low (i.e., ~4%) and high (i.e., ~17%) humidities were generated at 180 °C. The removal efficiencies of humidity and the loss rates of HCl by the devices were determined. The removal efficiencies of humidity by HPD_CL and the two dryers were found to be similar, at approximately 85% at a low humidity and 95% at a high humidity. In terms of HCl loss rates, HPD_CL revealed the highest loss rates in all conditions (i.e., >95%), followed by HPD_NP and HPD_NS. At normal room temperature (i.e., 25 °C), the HCl loss rates of HPD_NP were >40% at a low humidity and >70% at a high humidity, while those of HPD_NS were >10% at a low humidity and >60% at a high humidity. The performance of the two dryers improved when they were heated to 80 °C. However, this temperature caused damage to the dryers, which reduced their lifetime.


2021 ◽  
Vol 21 (24) ◽  
pp. 18629-18640
Author(s):  
Maria Cascajo-Castresana ◽  
Sylvie Morin ◽  
Alexander M. Bittner

Abstract. We employed environmental scanning electron microscopy (ESEM) in low-humidity atmosphere to study the ice growth, coalescence of crystallites, polycrystalline film morphology, and sublimation, in the temperature range of −10 to −20 ∘C. First, individual ice crystals grow in the shape of micron-sized hexagonal columns with stable basal faces. Their coalescence during further growth results in substantial surface defects and forms thick polycrystalline films, consisting of large grains separated by grain boundaries. The latter are composed of 1 to 3 µm wide pores, which are attributed to the coalescence of defective crystallite surfaces. Sublimation of isolated crystals and of films is defect-driven, and grain boundaries play a decisive role. A scallop-like concave structure forms, limited by sharp ridges, which are terminated by nanoscale asperities. The motivation for this work is also to evaluate ESEM's ability to provide a clean and reproducible environment for future study of nucleation and growth on atmospherically relevant nucleators such as materials of biological origin and inorganic materials. Hence, extensive information regarding potential ESEM beam damage and effect of impurities are discussed.


Author(s):  
Mi Young Noh ◽  
Seulgi Mun ◽  
Karl J. Kramer ◽  
Subbaratnam Muthukrishnan ◽  
Yasuyuki Arakane

The Asian tiger mosquito, Aedes albopictus, is one of the most serious public health pests, which can transmit various vector-borne diseases. Eggs from this mosquito species become dark black shortly after oviposition and exhibit high desiccation resistance. Some of the Yellow proteins that act as dopachrome conversion enzymes (DCEs) are involved in the tyrosine-mediated tanning (pigmentation and sclerotization) metabolic pathway that significantly accelerates melanization reactions in insects. In this research, we analyzed the function of one of the yellow genes, yellow-y (AalY-y), in eggshell/chorion melanization of Ae. albopictus eggs. Developmental and tissue-specific expression measured by real-time PCR showed that AalY-y transcripts were detected at all stages of development analyzed, with significantly higher levels in the ovaries from blood-fed adult females. Injection of double-stranded RNA for AalY-y (dsAalY-y) had no significant effect on fecundity. However, unlike dsEGFP-treated control eggs that become black by 2–3 h after oviposition (HAO), dsAalY-y eggs were yellow-brown at 2 HAO, and reddish-brown even at 48 HAO. dsEGFP eggs exhibited resistance to desiccation at 48 HAO, whereas approximately 50% of the dsAalY-y eggs collapsed when they were moved to a low humidity condition. In addition, TEM analysis revealed an abnormal morphology and ultrastructure of the outer-endochorion in the dsAalY-y eggs. These results support the hypothesis that AalY-y is involved in the tyrosine-induced melanin biosynthetic pathway, plays an important role in black melanization of the chorion and functions in conferring proper morphology of the outer-endochorion, a structure that is presumably required for egg desiccation resistance in Ae. albopictus.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7721
Author(s):  
Chang Che ◽  
Behnam Dashtbozorg ◽  
Xiaoying Li ◽  
Hanshan Dong ◽  
Mike Jenkins

Glass fibre reinforced polyamide 6 (GFPA6) thermoplastic composites (TPCs) are promising materials with excellent properties, but due to their low surface free energy they are usually difficult to wet, and therefore, possesses poor adhesion properties. μPlasma modification offers potential solutions to this problem through functionalisation of the GFPA6 surface. In this study, the effect of μPlasma on the wetting behaviour of GFPA6 surfaces was investigated. Following single μPlasma treatment scans of GFPA6 samples, a substantial enhancement in wettability was observed. However, the effect of the μPlasma modification was subject to an ageing (hydrophobic recovery) phenomenon, although the enhancement was still partially maintained after 4 weeks. The ageing process was slower when the GFPA6 material was pre-dried and stored in low humidity conditions, thereby demonstrating the importance of the storage environment to the rate of ageing. Orientation of the fibres to the observed contact angle was found to be crucial for obtaining reproducible measurements with lower deviation. The influence of testing liquid, droplet volume and surface texture on the repeatability of the measured contact angle were also investigated.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Qazi U. Farooq ◽  
Muhammad T. Naqash ◽  
Abdelkader T. Ahmed ◽  
Bilal A. Khawaja

The Arabian Peninsula is an arid zone with a hot desert climate and severe water scarcity. The low humidity, elevated ambient temperatures, and high evaporation rates in the region deemed conventional surface irrigation unsustainable. The IoT-based subsurface smart irrigation systems can be essentially developed for these regions to avoid surface evaporation losses. In this research, the sandy soil conditions of western Saudi Arabia have been considered in numerical simulations to evaluate the performance of a subsurface smart irrigation system. The influence zone of saturation generated by subsurface diffusers in the target root region has been analysed for two different types of sandy soils. The simulation results generated by the COMSOL Multiphysics program reveal that the subsurface smart irrigation system can be effectively applied to simultaneously manage the target root zone at the ideal saturated conditions and prevent surface evaporation losses.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1774
Author(s):  
Flavius Bălăcenoiu ◽  
Dieter Carol Simon ◽  
Constantin Nețoiu ◽  
Dragoș Toma ◽  
Ion Cătălin Petrițan

To control a forest pest, it is necessary to understand the biotic and/or abiotic factors that can lead to population regulation. Such knowledge is even more critical if the pest is an invasive alien species. This is the case for Corythucha arcuata (Say, 1832), commonly known as the oak lace bug (OLB), an alien insect species that has invaded oak forests on a large scale, both in Romania and other European countries. In this study, we set out to examine the relationship between adults of this species and meteorological factors, such as air temperature and humidity. The study lasted for two years (2019–2020) and was performed on three plots in Romania, in Ilfov, Giurgiu, and Călărași counties. In the first year, the seasonal dynamics of the OLB populations and the meteorological factors potentially influencing those were studied, whilst in the second year, the dynamics of the diurnal activity of the insect population were examined. We found that Corythucha arcuata experienced two population peaks—in July and August—and a diurnal population dynamic that reached a maximum at midday. Data analysis indicated that, for most of the time, the adult activity was influenced by both temperature and humidity. In addition, the population dynamics were not constant over the course of the day, preferring relatively high temperatures and low humidity but not exceeding certain thresholds of thermal discomfort.


Author(s):  
Tung-Lung Wu ◽  
Jenn-Kai Tsai ◽  
Ya-Zhu Song ◽  
Meng-Xiu Chen ◽  
Tian-Chiuan Wu ◽  
...  

This study explores the influence of molar ratio of the synthetic solution of methylammonium iodide (MAI) and PbI2 on perovskite solar cells. The complete perovskite crystals must be produced in a low-humidity environment. The substrate is spin-coated in the adjusted MAPbI3 synthesis solution and annealed by using a nitrogen furnace tube to form perovskite crystals. During the crystallization of MAPbI3, some of the PbI2 remains, which improves the efficiency of the perovskite solar cell. Therefore, we adjust the molar concentration of MAI to find the appropriate amount of the PbI2 residual. We fix the MAI molar concentration at 1 M and adjust the PbI2 molar concentration from 0.8 M to 1.4 M. The molar ratios of MAI and PbI2 are, then, 1:0.8, 1:1, 1:1.2, and 1:1.4, respectively. Then, we use UV–vis, FE-SEM, and photoelectric conversion efficiency (PCE) measurements for comparing the growth of perovskite crystals and their photoelectric characteristics. The results show that 1.2 M of PbI2 is the most appropriate concentration for perovskite solar cells among the adjusted concentrations.


2021 ◽  
Vol 12 (4) ◽  
pp. 045010
Author(s):  
Balaji Rakesh ◽  
Nipun Sharma ◽  
Rupali Nagar ◽  
Vipul Dhongade ◽  
Krishna Daware ◽  
...  

Abstract Sensors function by interacting with an appropriate stimulus, undergo a change in property, which is then diagnosed by making some measurements. For any sensor, the type of interaction between analyte and sensor surface determines its overall performance. This article explores the philosophy in which primary measurements like response curves can hold information on the “type” of interaction occurring between analyte and sensing material. As case study, titanium oxide (TiO2) pellet sensors fabricated by sol-gel growth of TiO2 nanoparticles (as-grown and annealed) are investigated for humidity sensing at room temperature. The sensors display a very fast response in the 0%–30% relative humidity (%RH) range and return to their initial state without applying any external heat treatment. The response curves are analysed in view of adsorption processes guided by Langmuir isotherms. Correlation between sensor microstructure, adsorption processes and response curve is used to build the mechanistic understanding of the sensing process. The results bring out a unique correlation between sensor microstructure, interaction of analyte with sensing material and profile of response curves. Further, the synthesised sensors exhibit a linear response in the 0%–30% RH range making them suitable for low humidity environments like food packaging industry.


Sign in / Sign up

Export Citation Format

Share Document