delta antigen
Recently Published Documents


TOTAL DOCUMENTS

166
(FIVE YEARS 8)

H-INDEX

35
(FIVE YEARS 2)

Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2371
Author(s):  
Florian A. Lempp ◽  
Imme Roggenbach ◽  
Shirin Nkongolo ◽  
Volkan Sakin ◽  
Franziska Schlund ◽  
...  

Hepatitis Delta virus (HDV) is a satellite of the Hepatitis B virus (HBV) and causes severe liver disease. The estimated prevalence of 15–20 million infected people worldwide may be underestimated as international diagnostic guidelines are not routinely followed. Possible reasons for this include the limited awareness among healthcare providers, the requirement for costly equipment and specialized training, and a lack of access to reliable tests in regions with poor medical infrastructure. In this study, we developed an HDV rapid test for the detection of antibodies against the hepatitis delta antigen (anti-HDV) in serum and plasma. The test is based on a novel recombinant large hepatitis delta antigen that can detect anti-HDV in a concentration-dependent manner with pan-genotypic activity across all known HDV genotypes. We evaluated the performance of this test on a cohort of 474 patient samples and found that it has a sensitivity of 94.6% (314/332) and a specificity of 100% (142/142) when compared to a diagnostic gold-standard ELISA. It also works robustly for a broad range of anti-HDV titers. We anticipate this novel HDV rapid test to be an important tool for epidemiological studies and clinical diagnostics, especially in regions that currently lack access to reliable HDV testing.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1572
Author(s):  
Samira Dziri ◽  
Christophe Rodriguez ◽  
Athenaïs Gerber ◽  
Ségolène Brichler ◽  
Chakib Alloui ◽  
...  

Human hepatitis delta virus (HDV) is a small defective RNA satellite virus that requires hepatitis B virus (HBV) envelope proteins to form its own virions. The HDV genome possesses a single coding open reading frame (ORF), located on a replicative intermediate, the antigenome, encoding the small (s) and the large (L) isoforms of the delta antigen (s-HDAg and L-HDAg). The latter is produced following an editing process, changing the amber/stop codon on the s-HDAg-ORF into a tryptophan codon, allowing L-HDAg synthesis by the addition of 19 (or 20) C-terminal amino acids. The two delta proteins play different roles in the viral cell cycle: s-HDAg activates genome replication, while L-HDAg blocks replication and favors virion morphogenesis and propagation. L-HDAg has also been involved in HDV pathogenicity. Understanding the kinetics of viral editing rates in vivo is key to unravel the biology of the virus and understand its spread and natural history. We developed and validated a new assay based on next-generation sequencing and aimed at quantifying HDV RNA editing in plasma. We analyzed plasma samples from 219 patients infected with different HDV genotypes and showed that HDV editing capacity strongly depends on the genotype of the strain.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hans J. Netter ◽  
Marilou H. Barrios ◽  
Margaret Littlejohn ◽  
Lilly K. W. Yuen

Hepatitis delta virus (HDV) is a human pathogen, and the only known species in the genus Deltavirus. HDV is a satellite virus and depends on the hepatitis B virus (HBV) for packaging, release, and transmission. Extracellular HDV virions contain the genomic HDV RNA, a single-stranded negative-sense and covalently closed circular RNA molecule, which is associated with the HDV-encoded delta antigen forming a ribonucleoprotein complex, and enveloped by the HBV surface antigens. Replication occurs in the nucleus and is mediated by host enzymes and assisted by cis-acting ribozymes allowing the formation of monomer length molecules which are ligated by host ligases to form unbranched rod-like circles. Recently, meta-transcriptomic studies investigating various vertebrate and invertebrate samples identified RNA species with similarities to HDV RNA. The delta-like agents may be representatives of novel subviral agents or satellite viruses which share with HDV, the self-complementarity of the circular RNA genome, the ability to encode a protein, and the presence of ribozyme sequences. The widespread distribution of delta-like agents across different taxa with considerable phylogenetic distances may be instrumental in comprehending their evolutionary history by elucidating the transition from transcriptome to cellular circular RNAs to infectious subviral agents.


2020 ◽  
Vol 117 (30) ◽  
pp. 17977-17983 ◽  
Author(s):  
Sofia Paraskevopoulou ◽  
Fabian Pirzer ◽  
Nora Goldmann ◽  
Julian Schmid ◽  
Victor Max Corman ◽  
...  

Hepatitis delta virus (HDV) is a human hepatitis-causing RNA virus, unrelated to any other taxonomic group of RNA viruses. Its occurrence as a satellite virus of hepatitis B virus (HBV) is a singular case in animal virology for which no consensus evolutionary explanation exists. Here we present a mammalian deltavirus that does not occur in humans, identified in the neotropical rodent speciesProechimys semispinosus. The rodent deltavirus is highly distinct, showing a common ancestor with a recently described deltavirus in snakes. Reverse genetics based on a tandem minus-strand complementary DNA genome copy under the control of a cytomegalovirus (CMV) promoter confirms autonomous genome replication in transfected cells, with initiation of replication from the upstream genome copy. In contrast to HDV, a large delta antigen is not expressed and the farnesylation motif critical for HBV interaction is absent from a genome region that might correspond to a hypothetical rodent large delta antigen. Correspondingly, there is no evidence for coinfection with an HBV-related hepadnavirus based on virus detection and serology in any deltavirus-positive animal. No other coinfecting viruses were detected by RNA sequencing studies of 120 wild-caught animals that could serve as a potential helper virus. The presence of virus in blood and pronounced detection in reproductively active males suggest horizontal transmission linked to competitive behavior. Our study establishes a nonhuman, mammalian deltavirus that occurs as a horizontally transmitted infection, is potentially cleared by immune response, is not focused in the liver, and possibly does not require helper virus coinfection.


2019 ◽  
Vol 93 (8) ◽  
Author(s):  
Kaneemozhe Harichandran ◽  
Yiran Shen ◽  
Susannah Stephenson Tsoris ◽  
See-Chi Lee ◽  
John L. Casey

ABSTRACTHepatitis delta virus (HDV) is a satellite of hepatitis B virus that increases the severity of acute and chronic liver disease. HDV produces three processed RNAs that accumulate in infected cells: the circular genome; the circular antigenome, which serves as a replication intermediate; and lesser amounts of the mRNA, which encodes the sole viral protein, hepatitis delta antigen (HDAg). The HDV genome and antigenome RNAs form ribonucleoprotein complexes with HDAg. Although HDAg is required for HDV replication, it is not known how the relative amounts of HDAg and HDV RNA affect replication, or whether HDAg synthesis is regulated by the virus. Using a novel transfection system in which HDV replication is initiated usingin vitro-synthesized circular HDV RNAs, HDV replication was found to depend strongly on the relative amounts of HDV RNA and HDAg. HDV controls these relative amounts via differential effects of HDAg on the production of HDV mRNA and antigenome RNA, both of which are synthesized from the genome RNA template. mRNA synthesis is favored at low HDAg levels but becomes saturated at high HDAg concentrations. Antigenome RNA accumulation increases linearly with HDAg and dominates at high HDAg levels. These results provide a conceptual model for how HDV antigenome RNA production and mRNA transcription are controlled from the earliest stage of infection onward and also demonstrate that, in this control, HDV behaves similarly to other negative-strand RNA viruses, even though there is no genetic similarity between them.IMPORTANCEHepatitis delta virus (HDV) is a satellite of hepatitis B virus that increases the severity of liver disease; approximately 15 million people are chronically infected worldwide. There are no licensed therapies available. HDV is not related to any known virus, and few details regarding its replication cycle are known. One key question is whether and how HDV regulates the relative amounts of viral RNA and protein in infected cells. Such regulation might be important because the HDV RNA and protein form complexes that are essential for HDV replication, and the proper stoichiometry of these complexes could be critical for their function. Our results show that the relative amounts of HDV RNA and protein in cells are indeed important for HDV replication and that the virus does control them. These observations indicate that further study of these regulatory mechanisms is required to better understand replication of this serious human pathogen.


Author(s):  
A. Ehling ◽  
B. Gierten ◽  
T. Arndt
Keyword(s):  

Viruses ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 720 ◽  
Author(s):  
Michelle Wille ◽  
Hans Netter ◽  
Margaret Littlejohn ◽  
Lilly Yuen ◽  
Mang Shi ◽  
...  

Hepatitis delta virus (HDV) is currently only found in humans and is a satellite virus that depends on hepatitis B virus (HBV) envelope proteins for assembly, release, and entry. Using meta-transcriptomics, we identified the genome of a novel HDV-like agent in ducks. Sequence analysis revealed secondary structures that were shared with HDV, including self-complementarity and ribozyme features. The predicted viral protein shares 32% amino acid similarity to the small delta antigen of HDV and comprises a divergent phylogenetic lineage. The discovery of an avian HDV-like agent has important implications for the understanding of the origins of HDV and sub-viral agents.


2018 ◽  
Author(s):  
Michelle Wille ◽  
Hans J. Netter ◽  
Margaret Littlejohn ◽  
Lilly Yuen ◽  
Mang Shi ◽  
...  

AbstractHepatitis delta virus (HDV) is currently only found in humans, and is a satellite virus that depends on hepatitis B virus (HBV) envelope proteins for assembly, release and entry. Using meta-transcriptomics, we identified the genome of a novel HDV-like agent in ducks. Sequence analysis revealed secondary structures that were shared with HDV, including self-complementarity and ribozyme features. The predicted viral protein shares 32% amino acid similarity to the small delta antigen of HDV and comprises a divergent phylogenetic lineage. The discovery of an avian HDV-like agent has important implications for the understanding of the origins of HDV and subviral agents.ImportanceHepatitis delta virus (HDV) is currently only found in humans, and coinfections of HDV and Hepatitis B virus (HBV) in humans result in severe liver disease. There are a number of hypotheses for the origin of HDV, although a key component of all is that HDV only exists in humans. Here, we describe a novel deltavirus-like agent identified in wild birds. Although this agent is genetically divergent, it exhibits important similarities to HDV, such as the presence of ribosymes and self-complementarity. The discovery of an avian HDV-like agent challenges our understanding of both the origin and the co-evolutionary relationships of subviral agents with helper viruses.


Sign in / Sign up

Export Citation Format

Share Document