random composites
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 13)

H-INDEX

27
(FIVE YEARS 4)

2021 ◽  
Vol 263 ◽  
pp. 113678
Author(s):  
Evangelia Delli ◽  
Dimitrios Giliopoulos ◽  
Dimitrios N. Bikiaris ◽  
Konstantinos Chrissafis

Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2161
Author(s):  
Wojciech Nawalaniec ◽  
Katarzyna Necka ◽  
Vladimir Mityushev

The theory of structural approximations is extended to two-dimensional double periodic structures and applied to determination of the effective conductivity of densely packed disks. Statistical simulations of non-overlapping disks with the different degrees of clusterization are considered. The obtained results shows that the distribution of inclusions in a composite, as an amount of geometrical information, remains in the discrete corresponding Voronoi tessellation, hence, precisely determines the effective conductivity for random composites.


2020 ◽  
pp. 108128652097761
Author(s):  
CQ Ru

A simplified metaelastic model is presented to study long-wavelength dynamics of random composites filled with coated rigid spheres under the condition that the characteristic wavelength of the displacement field is much larger than the average distance between adjacent coated rigid spheres. The model is characterized by a simple differential relation between the displacement field of the composite and the displacement field of the mass center of a representative unit cell. The validity and accuracy of the model are demonstrated by comparing its predicted bandgap frequencies with known numerical and experimental data. The efficiency and merits of the model are demonstrated by applying it to study vibration isolation of coated rigid sphere-filled composite rods and (periodic or non-periodic) free vibration caused by initial displacement or velocity disturbance of the embedded rigid spheres inside an otherwise static composite rod. The proposed model could offer a simple method to study various long-wavelength metaelastic dynamic problems of coated rigid sphere-filled random composites.


Author(s):  
Anne-Laure Fauchille ◽  
Bram van den Eijnden ◽  
Kevin Taylor ◽  
Peter David Lee

À l’échelle du laboratoire, les roches argileuses sont des matériaux hétérogènes dont le comportement thermo-hydromécanique est en grande partie contrôlé par la microstructure. Le choix du nombre et de la taille des échantillons à étudier en laboratoire est déterminant pour appréhender la variabilité des propriétés de la roche argileuse à petite échelle. Cet article présente une méthode statistique permettant de préciser la surface (ou le volume) et le nombre d’échantillons à prendre en compte pour qu’une propriété p choisie caractérisant la microstructure, soit statistiquement représentative. Initialement établie dans un cas général par Kanit et al. (2003. Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40(13–14): 3647–3679), cette méthode consiste à partitionner un échantillon de propriété moyenne [see formula in PDF] connue, en sous-échantillons de surface D × D afin de calculer l’écart-type et l’erreur relative de la mesure de p en fonction de D. Cette méthode permet ainsi de définir des surfaces élémentaires représentatives de p en tenant compte de l’erreur relative par rapport à [see formula in PDF]. La méthode est d’abord présentée dans des cas généraux en 2D et 3D, et un exemple type est ensuite développé en 2D pour caractériser la fraction argileuse d’une lamine sédimentaire de Bowland (Royaume-Uni). La fraction surfacique argileuse est choisie comme propriété p, à partir d’une image grand-champ en microscopie électronique à balayage. La méthode est applicable en 2D et 3D sur les matériaux finement divisés autant sur les roches que sur les sols argileux, tant que l’échantillon considéré contient suffisamment d’éléments figurés (inclusions rigides ou pores dans une matrice par exemple) pour permettre l’utilisation des statistiques. L’apport principal visé pour la communauté des ingénieurs est dans la mesure du possible un meilleur ciblage de la quantité d’échantillons à prélever en forage pour mieux évaluer la variabilité des paramètres macroscopiques des roches argileuses. Les limites de la méthode sont ensuite discutées.


2020 ◽  
Vol 103 ◽  
pp. 103443 ◽  
Author(s):  
Johann Guilleminot ◽  
John E. Dolbow

Author(s):  
Marco Pingaro ◽  
Emanuele Reccia ◽  
Patrizia Trovalusci

A fast statistical homogenization procedure (FSHP) based on virtual element method (VEM)—previously developed by the authors has been successfully adopted for the homogenization of particulate random composites, via the definition of the representative volume element (RVE), and of the related equivalent elastic moduli. In particular, the adoption of virtual elements of degree one for modeling the inclusions provided reliable results for materials with low contrast, defined as the ratio between mechanical properties of inclusions and matrix. Porous media are then here described as bimaterial systems in which soft circular inclusions, with a very low value of material contrast, are randomly distributed in a continuous stiffer matrix. Several simulations have been performed by varying the level of porosity, highlighting the effectiveness of FSHP in conjunction with virtual elements of degree one.


Author(s):  
Wojciech Nawalaniec

The main goal of this paper is to present the application of structural sums, mathematical objects originating from the computational materials science, in construction of a feature space vector of two-dimensional random composites simulated by distributions of non-overlapping discs on the plane. Construction of the feature vector enables the immediate application of machine learning tools and data analysis techniques to random structures. In order to present the accuracy and the potential of structural sums as geometry descriptors, we apply them to classification problems comprising composites with circular inclusions as well as composites with shapes formed by discs. As an application, we perform the analysis of different models of composites in order to formulate the irregularity measure of random structures. We also visualize the relationship between the effective conductivity of two-dimensional composites and the geometry of inclusions.


Sign in / Sign up

Export Citation Format

Share Document